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3.1 Chapter Overview

We begin this chapter by developing a structural characterization of com-

parability graphs. Almost all of this material has its origins in the work

of Gallai and his classic paper [99]. From this characterization, it is easy

to develop a poylnomial time recognition algorithm which will determine

whether an input graph is a comparability graph. When the answer is yes,

we will provide a transitive orientation, and when the answer is no, we will

be able to explain why. Our treatment of comparability graphs will include

a number of elementary propositions, and in some cases, we provide only a

sketch of the proof—although we encourage the reader to fill in the details,

as the subject area has trapped many an unsuspecting explorer.

A surprisingly large percentage of combinatorial problems for partially

ordered sets deals with the special class of interval orders. Building on the

characterization of comparability graphs, we develop in this chapter the key

structural properties of interval orders which will be used in several of the

following chapters.

3.2 A Structural Characterization of Comparability Graphs

We consider a transitive orientation T of a comparability graph G as a strict

partial order T on the vertex set of G so that (1) for every edges xy, exactly

one of (x, y) and (y, x) belongs to T ; and (2) if (x, y), (y, z) ∈ T , then xz is

an edge in G and (x, z) ∈ T .

We start with the following elementary proposition.

Proposition 3.2.1 Let G be a comparability graph, and let T be a transitive

orientation of G. Let x, y and z be vertices in G. If xy and yz are edges in
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2 Comparability Graphs

G but yz is not an edge, then exactly one of the following two statements is

true:

(i) (x, y) ∈ T and (x, z) ∈ T .

(ii) (y, x) ∈ T and (z, x) ∈ T .

It is important to note that the requirement that y not be adjacent to z is

satisfied when y = z.

3.2.1 Comparability Testing Graphs

When G is a graph, we define the comparability testing graph of G, denoted

CT(G) as follows. The vertex set of CT(G) is {(x, y) : xy is an edge in G}.
The edges in CT(G) are determined by the following two rules:

(i) If (x, y) and (x, z) are distinct vertices of CT(G), with y not adjacent

to z in G, then (x, y) is adjacent to (x, z) in CT(G).

(ii) If (y, x) and (z, x) are distinct vertices of CT(G), with y not adjacent

to z in G, then (y, x) is adjacent to (z, x) in CT(G).

The following result is immediate.

Proposition 3.2.2 Let G be a comparability graph, and let C be a compo-

nent of CT(G). If T is a transitive orientation of G, then exactly one of the

following two statements is true:

(i) C ⊆ T .

(ii) C ∩ T = ∅.

We say that a graph G is consistent if there there is no vertex (x, y) in

CT(G) so that (x, y) and (y, x) belong to the same component of CT(G).

It is clear that a comparability graph is consistent. As we shall see, the

converse is also true—although we will need some additional background

material before presenting the proof of the following theorem.

Theorem 3.2.3 A graph is a comparability graph if and only if it is consis-

tent.

Before closing this subsection, we note the following elementary fact.

Proposition 3.2.4 An induced subgraph of a consistent graph is also con-

sistent.
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3.2.2 Circuits in Graphs

Other researchers have elected to state Theorem 3.2.3 in a slightly different

manner. Let t be an integer with t ≥ 3. A sequence σ = (x1, x2, . . . , xt) of

vertices in a graph G is called a circuit when xixi+1 is an edge in G for each

i = 0, 1, . . . , t. Of course, when i = t, we simply mean that xtx0 is an edge

in G. On the other hand, we do not require that the vertices in a circuit be

distinct. In particular, it is always possible for xi to be the same vertex as

xi+2.

A triangular chord in a circuit σ = (x1, x2, . . . , xt) is a distinct pair xixi+2

which is an edge in G.

With this terminology, Theorem 3.2.3 can be restated as follows—and

this is the statement you will find in the papers of Ghoulá-Houri [99] and

Gilmore and Hoffman [99].

Theorem 3.2.5 A graph G is a comparability graph if and only if every odd

circuit of length at least 5 has a triangular chord.

3.2.3 Partitive Sets in Graphs

If G is a graph, a set S of vertices is said to be partitive in G if for every

vertex not in S, exactly one of the following two statements holds:

(i) x is adjacent to s, for every s ∈ S.

(ii) x is not adjacent to s, for every s ∈ S.

A single vertex is always partitive, as is the set of all vertices in G; these

are called trivial partitive sets. All other partitive sets are non-trivial.

In the discussion which follows, when G = (V,E) is a graph and D is a

set of vertices in the comparability testing graph of G, we let E(D) = {uv ∈
E : (u, v) ∈ D}. Also, we let S(D) denote the subset of V consisting of all

vertices which are endpoints of one or more edges in E(D).

Proposition 3.2.6 Let G be a graph, let CT(G) be its comparability testing

graph and let C be a component of CT(G). Then

(i) S(C) is a partitive set in G.

(ii)
(
S(C), E(C)

)
is a connected subgraph of G.

3.2.4 A Reduction Lemma

The following lemma explains why partitive sets are useful in characterizing

comparability graphs.
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Lemma 3.2.7 Let G = (V,E) be a graph, let S be a partitive set in G, and

let s0 be any vertex in S. Then let G1 be the subgraph induced by S and let

G2 be the subgraph induced by (V − S) ∪ {s0}. Then

(i) G is a comparability graph if and only if both G1 and G2 are compa-

rability graphs.

(ii) G is consistent if and only if both G1 and G2 are consistent.

Proof We prove the first statement, and note that the second follows along

similar lines.

An induced subgraph of a comparability graph is also a comparability

graph. So if G is a comparability graph, S is a partitive set in G, and

s0 ∈ S, then G1 and G2 are induced subgraphs of G and are therefore

comparability graphs.

Now suppose that S is a partitive set in G, s0 ∈ S, and G1 and G2 are

comparability graphs. Let T1 and T2 be transitive orientations of G1 and

G2 respectively. Construct a transitive orientation T of G by setting

(i) If x, y ∈ S, then (x, y) ∈ T if and only if (x, y) ∈ T1.
(ii) If x, y /∈ S, then (x, y) ∈ T if and only if (x, y) ∈ T2.
(iii) If x ∈ S, y /∈ S, then (1) (x, y) ∈ T if and only if (s0, y) ∈ T2 and

(y, x) ∈ T if and only (y, s0) ∈ T2.

3.2.5 Completing the Proof

Now we return to Theorem 3.2.3 and show that if G = (V,E) is consistent,

then it is a comparability graph. We proceed by induction on the number of

vertices in G. By inspection, all graphs on at most 4 vertices are compara-

bility graphs, so we will assume that the theorem holds whenever G has at

most k vertices, where k ≥ 4. We then consider the case when G has k + 1

vertices. If G has a non-trivial partitive set S, then the result follows from

Lemma 3.2.7. So we will assume that G has no non-trivial partitive sets.

Note that this implies that G is connected.

Let C be an arbitrary component of the comparability testing graph

CT(G). To complete the proof, we will show that C is a transitive ori-

entation of G.

Claim 3.2.8 C is an irreflexive and transitive binary relation.

Proof The fact that C is irreflexive follows from the assumption that G is



3.2 A Structural Characterization of Comparability Graphs 5

consistent. We now show that it is transitive. We argue by contradiction.

Of all triples (a, b, c) for which (a, b), (b, c) ∈ C and (a, c) /∈ C, choose one

for which the distance from (a, b) to (b, c) in CT(G) is as small as possible.

Then let (p1, p2, . . . , pt) be a shortest path from (a, b) to (b, c) in CT(G).

First note that a 6= c, for if a = c, then C contains both (a, b) and

(b, c) = (b, a), which is a contradiction. Second, note that ac is an edge in

G, for if a is not adjacent to c in G, then (a, b) is adjacent to (c, b) in CT(G),

which implies that (b, c) and (c, b) belong to C.

For each i = 1, 2, . . . , t, let pi = (xi, yi). Of course, x1 = a, y1 = xt = b,

and yt = c. Then let j be the least positive integer for which x1 = x2 =

· · · = xj = a and xj+1 6= a. Then (a, yi) ∈ C for each i = 1, 2, . . . , j and yi
is not adjacent to yi+1 for all i = 1, 2, . . . , j − 1. Also yj+1 = yj ; and xj+1 is

not adjacent to a in G.

Observe that c /∈ {y1, y2, . . . , yj} and that (y1, c) = (b, c) ∈ C. If for some

i with 2 ≤ i ≤ j, yi is not adjacent to c in G, then (a, c) is adjacent to

(a, yi) in CT(G), so (a, c) ∈ C. The contradiction allows us to conclude that

cyi ∈ E, for all i = 1, 2, . . . , j. Also, since (y1, c) ∈ C, we conclude that

(yi, c) ∈ C for every i = 1, 2, . . . , j.

It follows that(
pj+1, pj+2, . . . , pt−1, pt, (y1, c), (y2, c), . . . , (yj , c)

)
is a path from pj+1 = (xj+1, yj+1) = (xj+1, yj) to (yj , c). However, this path

consists of t− 1 vertices, and thus (xj+1, c) ∈ C. Since xj+1 is not adjacent

to a, it follows that (a, c) is adjacent to (xj+1, c) in CT(G). Thus (a, c) ∈ C.

Claim 3.2.9 E = E(C), for every component C of CT(G).

Proof Suppose the claim is false. Then let C be a component of CT(G) for

which E(C) ( E. Let H = (S(C), E(C)). Then |S(C)| ≥ 2. Furthermore,

from Proposition 3.2.6, we know that S(C) is partitive. Therefore S(C) = V .

Since H is connected, it follows that for every edge e ∈ E − E(C), there

is a path in H from one end of e to the other.

Of all edges in E − E(C), choose an edge e = xy so that the length

of the path in H from x to y is as short as possible. We claim that this

path consists of three vertices. Suppose to the contrary that the path is

(x = u0, u1, . . . , ut = y) with t ≥ 3. If u1 is not adjacent to y in G, then

(x, y) is adjacent to (u0, u1) in CT(G) so e ∈ E(C). So we conclude that

f = u1y ∈ E. If f ∈ E(C), then (u0, u1, y) is a path from x to y in H. If
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f /∈ E(C), then (u1, u2, . . . , ut) is a shorter path in H from one end point of

f to the other, contradicting our choice of e.

It follows that either (1) (x, u1) ∈ C and (y, u1) ∈ C, or (2) (u1, x) ∈ C and

(u1, y) ∈ C. Without loss of generality, we assume that the first statement

applies. Let C ′ denote the component of CT(G) containing the vertex (x, y)

and let H ′ = (V,E(C ′)). Then H ′ is also a connected graph. Note that

E(C) ∩ E(C ′) = ∅.
Consider all subsets S ⊆ V − {u1} for which the following two conditions

are satisfied.

(i) (s, u1) ∈ C for every s ∈ S.

(ii) S induces a connected subgraph of H ′.

Of all such sets, choose one with |S| as large as possible. Since S is not an

autonomous set in G, there exists a vertex y ∈ V − S so that y is adjacent

in G to some but not all vertices of S. Then y 6= u1. Since S induces a

connected subgraph ofH ′, it follows that there are distinct vertices s1, s2 ∈ S
so that f = s1s2 is an edge from E(C ′), ys1 ∈ E and ys2 /∈ E. Then (y, s1)

is adjacent to (s1, s2) in CT(G) so ys1 ∈ E(C ′). Therefore S′ = S ∪ {y}
induces a connected subgraph of H ′.

If y is not adjacent to u1, then (s1, u1) is adjacent to (s1, y) in CT(G) and

thus s1y ∈ E(C) ∩E(C ′), which is a contradiction. Since s2 is not adjacent

to y in G, we know (s2, u1) is adjacent to (y, u1) in CT(G). Thus S′ satisfies

both conditions and we have a contradiction.

It follows from the preceding claim that CT(G) has exactly two compo-

nents each of which is a transitive orientation of G. This completes the proof

of the theorem.

3.2.6 The Family of Transitive Orientations

Let P = (X,P ) be a poset and let S be a proper subset of X. We say S is

autonomous in P if for every x ∈ X − S, exactly one of the following three

statements holds:

(i) x < s for every s ∈ S.

(ii) x > s for every s ∈ S.

(iii) x‖s for every s ∈ S.

When S is autonomous in P, note that S is partitive in the comparability

graph of P. However, the converse is not true.

When S is autonomous in P, we we can form a new partial order Q on

X as follows.
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(i) If x, y ∈ X − S, set x < y in Q if and only if x < y in P .

(ii) If x ∈ X − S and s ∈ S, set x < s in Q if and only if x < s in P and

x > s in Q if and only if x > s in P .

(iii) If x, y ∈ S, set x < y in Q if and only if x > y in P .

The partial order Q is said to have been obtained from P by reversing the

autonomous set S. Note that (X,P ) and (X,Q) have the same comparability

graph.

The following fundamentally important result, also due to Gallai [99],

admits an easy inductive proof. It is the basis of many of the “comparability

invariant” proofs which follow in subsequent chapters.

Theorem 3.2.10 Let P and Q be partial orders on a set X so that the

posets P = (X,P ) and Q = (X,Q) have the same comparability graph G.

Then there exists a sequence P0, P1, . . . , Pt of partial orders on X and a

sequence S0, S1, . . . , St−1 of subsets of X so that P = P0, Q = Pt and for

each i = 0, 1, . . . , t− 1, Si is an autonomous set in Pi, and Pi+1 is obtained

from Pi by reversing Si.

Proof Let P and Q be distinct strict partial orders from T . Set P0 = P .

If Pi has been defined for some i ≥ 0 and Pi 6= Q, choose (x, y) ∈ Pi − Q.

Then let C be the component of CT(G) which contains the vertex (x, y).

Then C ⊂ Pi −Q. Furthermore S(C) is an autonomous set in Pi. Then let

Pi+1 be obtained from Pi by reversing the automous set S(C). Furthermore,

C ⊂ Pi+1 ∩Q.

3.2.7 Algorithmic Issues

Let G be a graph on n vertices. It is easy to see that the structural character-

ization of comparability graphs developed above allows for the development

of an algorithm, whose running time will be polynomial in n, for testing

whether a graph is a comparability graph. Note that the comparability

testing graph CT(G) has at most 2n(n− 1) vertices. So a spanning tree al-

gorithm will determine its components, and from this information, the issue

of whether G is consistent can be quickly settled.

When the input graph G is not consistent, we find an edge xy ∈ E for

which both (x, y) and (y, x) belong to the same component of CT(G). A

path from (x, y) to (y, x) in CT(G) is then a “certificate” that G is not a

comparability graph.

On the other hand, if G is consistent, then the components of CT(G)
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come in pairs, one being the reverse of the other. A transitive orientation is

obtained by taking one of the two, for each such pair.

3.2.8 Characterizing Comparability Graphs by Forbidden

Subgraphs

Since any induced subgraph of a comparability graph is also a comparability

graph, it follows that there is a minimum family C of graphs so that a graph

G is a comparability graph if and only if it does not contain a graph from C
as an induced subgraph. In other words, the family C provides a forbidden

subgraph characterization of comparability graphs.

Despite the fact that recognizing comparability graphs is easy, it is sur-

prisingly difficult to find this minimum family C. This formidable task was

accomplished by Gallai in 1967xx, and his classic paper [99] is a masterful

piece of combinatorial mathematics, worthy of careful study.

It is relatively straightforward (although time consuming) to show that

the graphs displayed in Figure 3.2.8 belong to C. Also, the complements of

the graphs shown in Figure 3.2.8 belong to C. Gallai succeeded in showing

that these are the only graphs in C. We know of no easy proof for this

result. In fact, in retrospective, Gallai’s relatively lengthy argument can

only be viewed as elegant and insightful.

Theorem 3.2.11 (Gallai) The minimum list C of forbidden graphs for

comparability graphs consists of the graphs in Figure 3.2.8 and the comple-

ments of the graphs in Figure 3.2.8.

3.3 Interval Orders and Interval Graphs

A poset P = (X,P ) is called an interval order if there is a function I

assigning to each element x ∈ X a closed interval I(x) = [ax, bx] of the

real line R so that for all x, y ∈ X, x < y in P if and only if bx < ay
in R. We call I an interval representation of P, or just a representation

for short. For brevity, whenever we say that I is a representation of an

interval order P = (X,P ), we will use the alternate notation [ax, bx] for the

closed interval I(x). Also, we let |I(x)| denote the length of the interval,

i.e., |I(x)| = bx − ax.

Note that end points of intervals used in a representation need not be

distinct. In fact, distinct points x and y from X may satisfy I(x) = I(y).

We even allow degenerate intervals. On the other hand, a representation is

said to be distinguishing if all intervals are non-degenerate and all end points
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Fig. 3.1. Comparability Graphs - Part 1

are distinct. It is easy to see that every interval order has a distinguishing

representation. In fact, since we are concerned only with finite posets, we

could have just as well required that all intervals used in the representation

be open.

Analogously, a graph G = (V,E) is an interval graph when there is a

function I which assigns to each vertex x ∈ V a closed interval I(x) = [ax, bx]

of R so that {x, y} ∈ E if and only if I(x) ∩ I(y) 6= ∅. As before, we call I

an interval representation of G and note that, if desired, we may assume I

is distinguishing.

Throughout this monograph, we will move back and forth between posets

and graphs in discussions about a family of intervals. The interval graph

determined by a family of intervals is just the incomparability graph of

the interval order. Chains correspond to independent sets and antichains

correspond to cliques.

3.3.1 Classical Representation Theorems

A good fraction of the early research on interval graphs and interval orders

was focused on characterization issues. Recall that a graph is chordal (some

researchers prefer to say the graph is triangulated) if it does not contain a

cycle on four or more vertices as an induced subgraph. Also, a vertex x in a
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Fig. 3.2. Comparability Graphs - Part 2

graph G is simplicial if its neighborhood is a complete subgraph of G. Here

is an elementary proposition linking these two concepts.

Proposition 3.3.1 A graph G is chordal if and only if every induced sub-

graph has a simplicial vertex.

Chordal graphs are a well-studied class of perfect graphs. The issue of

perfection is settled by the following elementary result.

Proposition 3.3.2 Let G be a chordal graph on n vertices and let L =

(x1, x2, . . . , xn) be a listing of the vertices of G so that for each i = 1, 2, . . . , n,

vertex xi is a simplicial vertex in the induced subgraph determined by {x1, x2, . . . , xi}.
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Then the First Fit coloring algorithm colors G with ω(G) colors, where ω(G)

is the maximum clique size of G.

Obviously, interval graphs are chorday, but it is natural to ask whether

all chordal graphs are interval graphs. This is not true. In fact, not all trees

are interval graphs, e.g., the subdivision of K(1, 3) is not an interval graph.

Three distinct vertices x, y and z in a graph G are said to form an as-

teroidal triple when for each two vertices in {x, y, z}, there is a path joining

them, with no vertex on the path adjacent to the third. For example, the

three leaves in a subdivision of K(1, 3) form an asteroidal triple.

Theorem 3.3.3 (Lekkerkerker and Boland) A chordal graph is an in-

terval graph if and only if it does not contain any asteroidal triples.

Boland and Lekkerkerker [99] used the preceding theorem to develop a

forbidden subgraph characterization of interval graphs; the argument is quite

complicated, although as we will see a bit later, a very simple proof can be

derived using Gallai’s characterization of comparability graphs.

Theorem 3.3.4 (Lekkerkerker and Boland) The minimum list I of

forbidden graphs for interval graphs consists of the graphs shown in Fig-

ure 3.3.1.
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3.3.2 Weak Orders

A finite poset P = (X,P ) is called a weak order if there exists a function

f : X → R so that for all x, y ∈ X with x 6= y,

(i) x < y in P if and only if f(x) < f(y) in R, and

(ii) x‖y if and only if f(x) = f(y).

The following elementary result is one of our exercises.

Proposition 3.3.5 Let P = (X,P ) be a poset. Then the following are

equivalent.

(i) P is a weak order.

(ii) P does not contain 2 + 1 as a subposet.

(iii) P is the lexicographic sum of a family of antichains over a chain.

Given a representation I of an interval order P = (X,P ), there are two

natural weak orders defined on X by the end points. The ordering by left

end points L defined by x < y in L if and only if ax < ay in R and the

ordering by right end points R defined by x < y in R if and only if bx < by
in R. When the representation is distinguishing, these weak orders are linear

orders.

3.3.3 Characterizing Interval Orders

Interval orders admit a very simple and elegant characterization. The fol-

lowing more comprehensive result summarizes the work of Fishburn [99],

Greenough [99] and Bogart-SombodyElse [99].

Theorem 3.3.6 Let P = (X,P ) be a poset. Then the following are equiva-

lent.

(i) P is an interval order.

(ii) P does not contain 2 + 2 as a subposet.

(iii) Whenever x < y and z < w in P , then either x < w or z < y in P .

(iv) For every x, y ∈ X, either D(x) ⊆ D(y) or D(y) ⊆ D(x).

(v) For every x, y ∈ X, either U(x) ⊆ U(y) or U(y) ⊆ U(x).

Proof The equivalence of the last four statements is immediate. We now

show that statement 1 is equivalent to 4. Suppose first that P = (X,P ) is

an interval order and that I is an interval representation of P. Let x, y ∈ X;

without loss of generality, we may assume ax ≤ ay in R. Then D(x) ⊆ D(y).

Now suppose that statement 4 holds for a poset P = (X,P ). We show
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Fig. 3.4. An Interval Order

that P is an interval order. Let Y = {D(x) : x ∈ X}, and let m = |Y |. Then

define a linear order L on Y by D < D′ in L if D ( D′. Then label the sets

in Y so that D1 < D2 < · · · < Dm in L. For each x ∈ X, let F (x) = [i, j],

where D(x) = Di and j = m if x is maximal, and Dj+1 = ∩{D(y) : x < y

in P}, otherwise.

One advantage to the proof given here for Fishburn’s representation the-

orem for interval orders is that the total number of end points used in the

representation is minimal. Also, note that we have the following not entirely

trivial proposition, first noticed by Greenough.

Proposition 3.3.7 Let P = (X,P ) be an interval order. Then |{D(x) : x ∈
X}| = |{U(x) : x ∈ X}|.

Example 3.3.8 The poset P shown in Figure 3.3.3 is an interval order. In

the table below, we list the up sets and down sets for each of the elements in

P , noting that there are four distinct down sets which can be labeled as D1,

D2, D3 and D4 so that D1 ( D2 ( D3 ( D4.

Similarly, there are four distinct up sets and we label them as U1, U2, U3

and U4 so that U4 ( U3 ( U2 ( U1. The bold face numbers correspond to

these labelings.

Finally, in the right most column, we associate with each element of P

the interval determined by the assignment of the bold face numbers in the

first two columns
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D(a) = ∅ 1

D(b) = {a, g, h} 3

D(c) = {h} 2

D(d) = ∅ 1

D(e) = {a, b, d, g, h} 4

D(f) = {a, g, h} 3

D(g) = ∅ 1

D(h) = ∅ 1

U(a) = {b, e, f} 2

U(b) = {e} 3

U(c) = ∅ 4

U(d) = {e} 3

U(e) = ∅ 4

U(f) = ∅ 4

U(g) = {b, e, f} 2

U(h) = {b, c, e, f} 1

I(a) = [1, 2]

I(b) = [3, 3]

I(c) = [2, 4]

I(d) = [1, 3]

I(e) = [4, 4]

I(f) = [3, 4]

I(g) = [1, 2]

I(h) = [1, 1]
In Figure 3.3.8, we show the resulting representation. On this same figure,

we illustrate how First Fit will partition the interval order into chains—

when applied using the ordering by left endpoints (how ties is broken doesn’t

matter). This is just the ordering for chordal graphs we discussed in the

preceding section. Note that the width of P is 4 because the highest color

used is 4. There are three maximum antichains: {a, d, g, h}, {a, c, d, g}
and {b, c, d, f}. The coloring algorithm will find the first two of these using

the left endpoint of intervals receiving the highest color. The third maximum

antichain could be found by a linear scan.

3.3.4 Semiorders

An interval order P = (X,P ) is called a semiorder if there is a constant

c for which it has an interval representation F such that the length of the

interval F (x) is exactly c, for every x ∈ X. From a modern perspective, it

would perhaps be more natural if these objects were called constant length
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interval orders or just unit interval orders. But we are now quite stuck with

the term: semiorders.

For semiorders, we have the following representation theorem, the princi-

pal part of which is due to Scott and Suppes [99].

Theorem 3.3.9 Let P = (X,P ) be an interval order. Then the following

statements are equivalent.

(i) P is a semiorder.

(ii) P does not contain 3 + 1 as a subposet.

(iii) Whenever x < y < z and w‖y in P , then either x < w or w < z in

P .

(iv) The binary relation W =
{

(x, y) ∈ X × X : x = y
}
∪
{

(x, y) ∈
X × X : D(x) ⊆ D(y), U(y) ( U(x)

}
∪
{

(x, y) ∈ X × X : D(x) (
D(y), U(y) ⊆ U(x)

}
is a weak order on X.

Proof The equivalence of statements 2, 3 and 4 is immediate. We show that

statements 1 and 4 are equivalent. First let P = (X,P ) be a semiorder and

let I be an interval representation in which all intervals have length c. Let

I(x) = [ax, ax + c], for every x ∈ X. Then (x, y) ∈W if and only if ax ≤ ay
in R, so that W is a weak order on X.

Now suppose that statement 4 holds for a poset P = (X,P ). We show

that P is a semiorder. We actually prove something stronger. Let L be any

linear order on X extending the weak order W . Proceeding by induction

on |X|, we show that there exists a distinguishing interval representation I

of P which assigns to each x ∈ X a unit length interval I(x) = [ax, ax + 1]

such that for all x, y ∈ X, ax < ay in R if and only if x < y in L.

Noting that the claim holds trivially when |X| = 1, consider the inductive

step. Suppose that L orders X as x1 < x2 < . . . , < xn. Let Y = X − {xn},
let Q = P (Y ) and L′ = L(Y ). In the poset Q = (Y,Q), let W ′′ be the binary

relation defined in statement 4 for the subposet Q. Then let W ′ = W (Y ).

Then W ′′ ⊆W ′ ⊆ L′.
It follows that Q is a semiorder and that there exists a distinguishing

representation I ′ of Q so that for all y, z ∈ Y , ay < az if and only if

y < z in L′. Also, y < z in Q if and only if ay + 1 < az. We now

show that this representation can be extended by an appropriate choice of

an interval I(x0) = [axn , axn + 1] for x0. If y < xn for every y ∈ Y , let

a = max{ay : y ∈ Y } and set axn = 2 + a.

So we may assume that S = {y ∈ Y : y‖xn} 6= ∅. It follows that there

is a positive integer i so that S = {xi, xi+1, . . . , xn−1}, and [a, b] = ∩{I(y) :

y ∈ S} is a nondegenerate interval. If D(xn) = ∅, set a′ = a; otherwise, set
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a′ = max{ay + 1 : y < xn}. In either case, note that a′ < b in R. It follows

that we may take an as any real number between a′ and b distinct from any

end point previously chosen.

There is an important corollary to the Scott-Suppes theorem for semiorders.

An interval order P = (X,P ) is said to be proper if it admits an interval

representation I so that if x, y ∈ X and x 6= y, then I(x) * I(y) and

I(y) * I(x). A semiorder is obviously proper but from the preceding theo-

rem, it follows that a proper interval order is also a semiorder.

3.3.5 Semiorders and Catalan Numbers

Here is a little combinatorial gem for semiorders. The result is widely cred-

ited to Dean and Keller [99], but it was actually known previously to Some-

bodyElse [99].

Theorem 3.3.10 For each n ≥ 1, the number of unlabeled semiorders on n

points is the Catalan number
(
2n−2
n−1

)
/n.

Proof Let I be a distinguishing interval representation of the semiorder P

and let L be the linear order on the ground set determined by the left end

points. Then the incidence (0–1) matrix M defined by m(i, j) = 1 if i < j

in P , and m(i, j) = 0 otherwise is a Catalan walk.

3.4 Further Remarks on Characterization Issues

Clearly, there are polynomial time algorithms for testing whether a poset is

an interval order, a semiorder, or a weak order—just because in each case,

membership is determined by excluding a finite number of forbidden posets.

Now consider the problem of testing whether a graph G is an interval graph.

First test the complement of G to see whether it is a comparability graph.

If not, then G is not an interval graph. If yes, then let P be any partial

order of the vertex set V of G so that the comparability graph of (X,P ) is

the complement of G, noting that G is an interval graph if and only if the

answer is yes.

Furthermore, using Fishburn’s theorem, it is easy to derive Boland and

Lekkerkerker’s forbidden subgraph characterization of interval graphs from

Gallai’s work on comparability graphs. Note that a graph G belongs to the

list characterizing interval graphs if and only if the complement belongs to

C and does not contain a four cycle.

The best known algorithm for testing whether a graph is an interval graph
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is due to Booth and Lueker [99] and has running time O(n2). Their algo-

rithm uses a special kind of data structure, called a PQ–tree.

3.5 Stuff Left to Do

1. Bibliography hasn’t even been started.

2. Historical notes. Nothing done here.

3. Chapter needs to be read carefully for consistency as others have

underone significant revision.


