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Abstract 

With a finite graph G = (V,E), we associate a partially ordered set P = (X, P) with X = V U E 
and x < e in P if and only if x is an endpoint of e in G. This poset is called the incidence poset 
of G. In this paper, we consider the function M ( p , d )  defined for p, d~>2 as the maximum 
number of edges a graph G can have when it has p vertices and the dimension of its incidence 
poset is at most d. It is easy to see that M ( p , 2 ) = p -  1 as only the subgraphs of paths 
have incidence posets with dimension at most 2. Also, a well known theorem of Schnyder 
asserts that a graph is planar if and only if its incidence poset has dimension at most 3. So 
M ( p , 3 ) = 3 p -  6 for all p>~3. In this paper, we use the product ramsey theorem, Tur~n's 
theorem and the Erd6s/Stone theorem to show that l i m p ~  M (p ,4 ) /p2=  3/8. We then derive 
some ring theoretic consequences of this in terms of minimal first syzygies and Betti numbers 
for monomial ideals. (~) 1999 Elsevier Science B.V. All rights reserved 

Keywords." Graph; Partially ordered set; Dimension; Regularity lemma; Ramsey theory; Extremal 
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1. Introduction 

In recent years, researchers have discovered interesting connections between graphs 

and the dimension of their incidence posets. Our goal here is to study the following 

extremal problem: 

Problem 1.1. For integers p, d~>2, find the maximum number M ( p , d )  of edges a 

graph on p vertices can have if the dimension of its incidence poset is at most d. 
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The starting point for this research is the following well known theorem of 
Schnyder [12]. 

Theorem 1.2. A graph G is planar i f  and only i f  the dimension o f  its incidence poset 

is at most 3. 

As an immediate consequence of  Schnyder's theorem, we see that determining the 
value of M ( p ,  3) is just the same as finding the maximum number of edges in a planar 

graph on p vertices, so M ( p , 3 ) = 3 p -  6 for all p~>3. 
We can also determine the exact value of M(p ,2 ) ,  as it is easy to see that the 

incidence poset of a graph has dimension at most 2 if and only if it is either a path 
or a subgraph of a path. It follows that M ( p , 2 ) = p -  1, for all p~>2. 

So in this paper, we concentrate on the determination of M ( p ,  4). In this case, we 
will will prove the following asymptotic formula. 

Theorem 1.3. 

lim M ( p , 4 )  _ 3 
p~o~ p2 8 

The proof of our main theorem requires several powerful combinatorial tools, in- 
cluding the product ramsey theorem, Tur~in's theorem and the Erd6s/Stone theorem. 
We shall also require some basic background material on dimension theory. For this, 
we refer the reader to Trotter's monograph [16]. 

The next section develops notation and terminology to help in applying these tools, 
while the third section contains the proofs of results necessary to verify Theorem 1.3. 
Section 4 discusses related combinatorial problems, and Section 5 presents some ap- 
plications to ring theory, a topic which served as the original motivation for this line 
of research. 

2. Combinatorial tools 

Throughout the paper, we denote the n-element set { 1,2 . . . .  , n} by [n]. Given a finite 
set S and an integer k with 0~<k~< [SI, we denote the set of all k-element subsets of S 
by (s). Given an integer t, finite sets Sl, $2 . . . . .  St and an integer k, we call an element 

of  (9) × (s2) × . . . x  (st) a grid (also, a k t grid). 

The next theorem is the first of three powerful tools we need to prove our main theo- 
rem. We refer the reader to [8] for the proof and for additional material on applications 
of Ramsey theory. 

Theorem 2.1 (The product Ramsey theorem). Given positive integers m, k, r and t, 

there exists an integer no so that i f  Sl,S2 . . . . .  St are sets with ISil >>.no for all i E [t], 
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and f is any map which assigns to each k t grid in (s~) × (s2) × . . .  × (s,) a color 
from [r], then there exist subsets 1tl,H2 . . . . .  Ht and a color ~t E [r] so that 

1. Hi E (~), for all i = 1,2 . . . . .  t, and 
2. f ( 9 ) = ~  for every k t grid 9E (~)  × (~2) × . . .  × (~,). 

In what follows, we will refer to the least no for which the conclusion of the pre- 

ceding theorem holds as the product ramsey number PRN(m,k, r, t). 
For integers p and t with 1 ~< t ~< p, let T(p, t) denote the balanced complete t-partite 

graph on p vertices, i.e., if p = q t  + r, where O<~r<k, then T(p , t )  is a complete 

t-partite graph having t - r parts of  size q and r parts of  size q + 1. Let T(p,  t) count 

the number of  edges in T(p, t). Evidently, 

T ( p , t ) =  ( t 2 r )  q 2 + ( ~ ) ( q + l ) 2 + r ( t - r ) q ( q + l )  • 

The following well known theorem [14] is often viewed as the starting point for 

extremal graph theory. 

Theorem 2.2 (Tur~n's theorem). For positive integers p and t with p>>.t + 1, the 
maximum number of  edges in a graph G on p vertices which does not contain a 
complete subgraph of size t + 1 is T(p, t ) .  Furthermore equality is obtained only 
when G is isomorphic to T(p, t ) .  

The asymptotic version of Tur~in's theorem is also of  interest, as it serves to motivate 

material to follow. 

Corollary 2.3. For a positive integer t and a positive real number 3 > 0, there exists 
an integer Po so that i f  P>~Po and G is a graph on p vertices having more than 
(½_1 ~7 + 8)P 2 edges, then G contains a complete subgraph on t + 1 vertices. 

Given a graph H on n vertices and an integer p>>.n, let T ( H , p )  be the maximum 

number of  edges a graph on p vertices can have if it does not contain H as a subgraph. 
So Tur~m's theorem is just the determination of T(H,  p)  in the special case where H 

is a complete graph. 
Suppose that the chromatic number of H is t + 1. Then the complete balanced 

t-partite graph T(p , t )  does not contain H ,  as all its subgraphs are t-colorable. It 
follows that 

T(H,  p)  >1 ~ 1 
lim p2 2t" p---* ~ o  

The following classic theorem asserts that this is asymptotically the right answer - -  
provided t ~>2. The case where t = 1 is quite different, although this detail is not of  
concern in this paper. 
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Theorem 2.4 (The Erd6s/Stone theorem). Let H be a graph with chromatic number 
t + l ~ > 3 .  Then 

lim T(H,  p) _ 1 1 
p~o~ p2 2 2t " 

3. Proof of the principal theorem 

In this section, we develop the results necessary for the proof of  Theorem 1.3. We 
first present the lower bound. It is the easier of  the two bounds. 

Theorem 3.1. I f  G is a graph whose chromatic number is at most 4, then the inci- 
dence poset o f  G has dimension at most 4. 

Proof. Let V = Vl U V2 U V3 U V4 be a partition of the vertex set V of G into 4 inde- 
pendent sets. Then let L be any linear order on V. We denoted by L a the dual of  L, 

i.e., x < y  in L a if  and only i f x > y  in L. Then define 4 linear orders L~,L2,L3 and L4 
on V by the following rules: 

1. In L1,L(V1)<L(V2)<L(V3)<L(V4); 
2. In L2,L(V4)<L(V3)<L(V2)<L(V~); 
3. In L3,Ld(V3)<Ld(V4)<Ld(VI)<Ld(V2); 

4. In L4,La(V2)<La(VI)<La(V4)<La(V3). 
Then extend these linear orders to linear extensions of  the incidence poset of  G 

by inserting the edges as ' low as possible'. It is just an easy exercise to show that 
this results in a realizer of  the incidence poset so that it has dimension at most 4, as 

claimed. [] 

Oberving that a t-partite graph has chromatic number at most t, we can then write 
the following lower bound for M(p ,4 ) .  

Corollary 3.2. For every p>.4 ,M(p ,4)>~T(p ,4) .  

Examining the formula for the number of  edges in T(p ,4) ,  we have the following 

lower bound for M(p ,4 ) .  

Corollary 3.3. 

lim M ( p ,  4) >~ 3 
p~o~ p2 8" 

Remark. Although asymptotically the same as p---* c~, T(p,  4) is not equal to M ( p ,  4). 
In [2, Theorem 1.2] an explicit embedding of a graph on p~>8 vertices with ½(p2 + 
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5 p -  24) -  (Llpj + 1)(p-  2L¼pj ) edges into ~g is given. Hence we have at least 
that M ( p , 4 ) -  T(p,4)>~ 2 p - 1 2  for all p~>8. 

Now we turn our attention to providing an upper bound on M(p ,4 ) .  

Lemma 3.4. There exists an integer Po so that any graph G whose incidence poset 

has dimension at most 4 does not contain the balanced complete 5-partite graph 

T(5p0,5). 

Proof. Set m = 2 ,  k = l ,  r = ( 5 ! )  4 and t = 5 .  We show that the conclusion of the 

lemma holds for the value P0 = PRN(m,k, r, t). 
To accomplish this, we assume that G is a graph so that 

1. G contains a subgraph H isomorphic to T(5p0,5), and 
2. The incidence poset of  G has dimension at most 4, as evidenced by the realizer 

= {L1,L2,L3,L4}. 
We then argue to a contradiction. 

Label the five disjoint independent sets in the copy of T(5p0,5) as Sl, $2, $3, $4 
and $5. We then define a coloring of the 15 grids in (s,) × (s12) × . . .  × (ss) as follows. 

Each 15 grid is just a 5-element set containing one point from each Si. Then consider 

the order of  these 5 points in the four linear extensions LI,Lz,L3 and L4. In each L~, 
the 5 points can occur in any of 5! orders. So taking the 4 orders altogether, there are 
at r = (5!) 4 patterns. 

Applying the product ramsey theorem, it follows that for each i C [5], there is a 
2-element subset 9i  contained in Si so that all the grids these subsets produce receive 
the same color. 

Now it follows easily that the linear orders treat the sets Ha, 92 ,93 ,94  and/ /5  as 
blocks, i.e., if a point from one block is over a point from another block in Lk, then 
both points from the first block are over both points from the second block in Lk. 

In view of the preceding remarks, we can define 4 linear orders M1,M2, M3 and M4 
on [5] by the rule i < j  in Mk if and only if both points from H/ are less than both 

points from Hj in Lk. Then set 5 P = {Ml ,M2,M3,M4}. 

Claim 1. For distinct i,j, k c [5], there is some c~ ~ [4] so that i is larger than both j 

and k in M~. 

To see that this claim is valid, consider a vertex x E/4i and an edge e with one 
end point in H: and the other in Hk. Since x and e are incomparable in the incidence 
poset, there is some ~ E [4] with x > e in L~. It follows that x is larger than both end 
points of  e in L~. In turn, this implies that i is larger than both j and k in M~. 

Claim 2. For distinct i , j  E [5], and for each vertex x E H,., there is a unique ~ E [4] 
with i > j  in M~ and x the largest element o f  Hi in L~. 
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To see that this claim holds, note that it is enough to show that there is some ~ E [4] 
with i > j  in M~ and x the largest element of Hi in L~. The uniqueness of ~ follows 
from the symmetry of the parameters. 

Now let y be the other vertex in Hi, and let z be any vertex from Hj. Then let e 
be the edge {y,z}.  Since x and e are incomparable, there is some ~E [4] with x > e  
in L~. Since x > e > z  in L~, i > j  in M~. Since x > e > y  in L~, x is the largest vertex 
in H/ in L~. 

This next claim follows immediately from Claim 2. 

Claim 3. For distinct i , j  E [5], there are exactly two integers ~, fl E [4] with i > j  in 
M~ and in M/~. Furthermore, the restrictions of  L~ and L~ to Hi are dual. 

For distinct i , jE  [5], let 5: ( i> j )={~ , f l }  be the 2-element set so that i > j  in M~ 
and in M& 

Claim 4. For distinct i, j ,  k E [5], 5: ( i > j ) M Se ( i > k ) ¢ (~. 

To see that this claim is valid, suppose to the contrary that for distinct i , j ,k  E [5], 
6:(i > j )M 5e(i > k ) =  0. After relabelling, we may assume that i > j  in M1 and in M2 
while i > k  in M3 and in M4. It follows that k > i > j  in both M1 and in M2, while 
j > i > k in both M3 and in M4. But this implies that there is no ~ E [4] so that i is 
larger than both j and k in M~, which contradicts Claim 1. 

Claim 5. For every i E [5], there exists an integer ~(i)E [4] so that ~(i)E 5 : ( i > j ) ,  
for all jE[5]  with i ¢ j .  

To see that this claim holds, note that if it fails, then by Claim 4 there are three 

distinct values ~, fl, 7 E [4] so that 

E 5~(i > j )  fq 5:(i > k), 

f i e  5 : ( i>k)MS:( i>  l), 

7 E 5:(i > l) M 5#(i > j ) .  

It follows that the restrictions of L~,L~ and L~. to H/ are identical, which contradicts 
Claim 3. 

Now here is the contradiction which completes the argument. Observe that for each 
i E [5], i is the highest element of [5] in M~(i). Clearly, this is impossible as there are 
only 4 orders in 5:. [] 

To complete the proof of Theorem 1.3, we need only appeal to the Erd6s/Stone 
theorem. Let 6 > 0. Since the complete balanced 5-partite graph T(5p0, 5) has chromatic 
number 5, it follows that if p is sufficiently large, then any graph G on p vertices 
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with more than (3/8 + 6)p 2 edges contains T(5p0,5) as a subgraph. Therefore the 
dimension of its incidence poset is at least 5. 

4. Related results and directions 

It may actually be possible to provide an exact formula for M(p ,4 ) ,  at least when 
p is sufficiently large. The regularity forced by the Product Ramsey Theorem makes 
this a possibility. 

For larger values of d, our results are not as precise. This is not surprising, be- 
cause the problem is linked to the difficult combinatorial problem of determining the 
dimension of the complete graph. Researchers have studied this problem extensively, 
producing exact formulas for p ~< 13 and relative tight asymptotic estimates for large 
values of p. Following the notation in [16], we let dim(k,r; p)  denote the dimension 
of  the poset consisting of all k-element and r-element subsets of  { 1,2 . . . . .  p} ordered 
by inclusion. Of course, finding the dimension of the complete graph on p vertices is 
then just the problem of determining dim(l,2; p). We refer the reader to Kierstead's 
forthcoming survey article [10] for additional details on this topic and an extensive 
bibliography. 

Observe that if we know that dim(l, 2; n + 1 ) >  d, for integers n and d, then we may 
conclude that 

lim M(p,a)<~ 1 1 (1) 
p---*oo p2 2 2n" 

In [15], Trotter showed that dim(l,2; n)~<4, when p~< 12, and also that dim(l,2; 13) 
= 5. This would imply that 

lim M ( p , 4 )  <<. 1 1 
p~o~ p2 2 24' 

so the asymptotic result we have proved for M ( p , 4 )  in the preceding section is con- 
siderably stronger. 

Unfortunately, for d = 5, we know of no better bound than the one obtained from 
Eq. (1). In this same volume, Ho~ten and Morris [9] derive a new formula for comput- 
ing dim(l, 2; n) and use this formula to show that dim(l,2; n)~< 5 if and only if n ~< 81. 
They also show that dim(1,2;n)~<6 if and only if n~<2646 and dim(1,2;n)~<7 if 
and only if n ~< 1425464. This discussion establishes the upper bound in the following 
result. 

Theorem 4.1. 

24 M ( p ,  5__.....~) 40 
5--0 ~< lim p2 ~< p---~ ec 81" 
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Proof.  We sketch how the lower bound is derived. We show that the dimension of  

any graph with chromatic number at most 25 has dimension at most 5. In particular, 

the complete 25-partite graph has dimension at most 5, regardless of  the part-sizes. 

The bound then follows from counting the number o f  edges in the balanced 25-partite 

graph. 

To accomplish this, we group the 25 parts into 5 blocks, each with 5 subblocks. The 

5 blocks are labelled B1,B2 . . . . .  Bs. Then, within block B~, we have 5 subblocks labelled 

Bi, 1, Bi,2 . . . . .  Bi,5. We consider the vertices themselves as positive integers. Within the 

subblocks, the order on vertices will either be in the natural order as integers, or the 

dual o f  this order. To distinguish between the two, whenever we write just Bi,j,  we 

also imply that the order is just as it occurs in the set o f  integers. But when we write 

B~*j, we mean that the subblock Bi, j is to be in reverse order. 

Now we describe 5 linear orders on the 5 blocks: 

1. B4 <B3 <B2 <B5 <B~ in L~. 

2. B5 <B4 <B3 <B~ <B2 in L2. 

3. Bl <B5 <B4 <B2 <B3 in L3. 

4. B2 < BI  <B5 <B3 <B4 in L4. 
5. B3 <B2 <BI  <B4 <B5 in Ls. 
We pause to note that the construction thus far is cyclic, and it will remain so. To 

complete the construction, we describe the ordering o f  the 5 subblocks o f  Bi, for each 

i = 1,2 . . . . .  5. In this description, our notation is cyclic. 

1. Bi,1 <Bi,2 <Bi,3 <Bi,4 <Bi,5 in Li. 
2. B'i,5 <B*4 <B*3 <B*2 <B*I in Li+l. 
3. B* <B~, 3 * * * i,1 <Bi,5 <Bi,2 <Bi,4 in Li+ 2. 
4. B'i,1 <B*4 <B*2 <B*5 <B*3 in Li+3. 
5. Bi,5 <Bi,4 <Bi,3 <Bi,2 <Bi, l in Zi+4. 
To extend these linear orders to linear extensions o f  the incidence poset, we insert 

the edges as low as possible. Then to verify that we have constructed a realizer, it 

suffices to show that for every vertex x and every edge e not containing x as one o f  its 

endpoints, there is some i E [5] so that x > e in Li. Now let y and z denote the end points 

o f  e. So we must only show that there is some i E [5] with x over both y and z in Li. 
Taking advantage o f  the symmetry in the construction, we may assume that x belongs 

to block B1. 

I f  neither y nor z is in B1, then x is over both y and z in L1. 

Now suppose that y also belongs to B1 but that z does not. Then x is over y and z in 

L1 unless x < y in Z. Now consider the case where x < y in 7/. Because the restrictions 
o f  Ll and L2 to B1 are dual, x is over y and z in L2 unless z is in block B2. So we 
also assume z is in B2. 

Now we observe that if x and y belong to the same subblock of  Bl, then x is over 

y and z in L4. On the other hand, if  x and y are in different subblocks, the x is over 
y and z in Ls. 

Next consider the case where x, y and z belong to B~. Here there are two subcases. 
Suppose first that neither y nor z belong to the same subblock as x. I f  y and z belong 
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to the same subblock, then x is over y and z in one of L1 and L2. I f  y and z belong 
to different subblocks, then we observe that subblocks BI,1, Bk3, B1,4 and Bi,5 are the 
top subblocks in the 5 linear orders, so we may assume x is in subblock BI,2. This 

subblock appears in second position in L2 and in L3, so it follows that we may assume 
that one of  y and z is in subblock Bl, l and the other is in BI,4. Now observe that x 

is over y and z in L4. 
Note that since they are end points of  an edge, we cannot have both y and z in the 

same subblock as x. So to complete the proof, we consider the case where y belongs 
to the same subblock as x, say Bl,i but that z belongs to subblock BI,j with i ¢ j .  I f  
i < j  in 77, then x is over y and z in one of L2 and Ls. So we may assume i > j .  I f  

x > y  in Z, then x is over y and z in L1. So we may assume x < y  in Z. Finally, note 

that with these conditions, x is over y and z in one of L3 and L4. [] 

As d ~ c~, the problem of determining M(d, p)  becomes essentially the same as 

finding the dimension of the complete graph Kp. The construction used by Spencer 
in [13] shows that if d~>3, and 

p ~ < 2 ( L ~ J  ), 

then the dimension of  the complete graph Kp is at most d. Furthermore, it is an easy 

exercise to show that the dimension of any graph with chromatic number at most p is 
at most d + 2. 

On the other hand, in [7], Fiiredi, Hajnal, R6dl and Trotter show that dim(Kp) is 
at least as large as the chromatic number of the double shift graph on [p]. This in 

turn is just the least d for which there are p antiehains in the poset consisting of all 

subsets of  [d] ordered by inclusion, a fact that was used in the proof of  the preceding 
theorem. Now the problem of estimating the number of antichains in the subset lattice 
is a well studied problem known as 'Dedekind's Problem'. Although no closed form 

answer is known, relatively good asymptotic results have been found (see [11], for 
example), and they suffice to show that 

dim(Kp) ,~ lglg p + (1/2 + o(1))lg lg lg p. 

Inverting the preceding formula then allows us to give an asymptotic formula for 
limp~o~ M ( p , d ) / p  2 which is quite accurate when d is large. 

5. Some algebraic applications 

In this section we want to interpret the graph theoretical results from previous sec- 
tions algebraically in terms of monomial ideals of  the polynomial ring k[Xl . . . . .  Xa] 
where k is a field. We will in particular consider the case d ~< 5. 
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Let R = k[Xl . . . . .  Xa] and I c R an ideal generated by {fl . . . . .  fp} C_ R. These gener- 
ators give rise to an R-module surjection q~: R p ---~R given by 

p 
(rl . . . . .  rp) ~ ~ rifi 

i=1 

and hence we have I-~RP/ker(q~) as R-modules. The submodule ker(~)C_ Re is called 

the (first) syzygy module of the p-tuple ( f l  . . . . .  f p ) E R  p, and is denoted by Syz 
( f l  . . . . .  fp). I f  now this module is generated by ~71 . . . . .  ~ GR p as an R-module then 
every solution 2 = ( x l  . . . . .  Xp) to the linear equation 

x l f l  + ' "  + Xpfp=O 

is an R-linear combination of the 71 . . . . .  ~, that is, there are hi . . . . .  hq ER such that 

"~= ~'-~q=l hiri" 

For a monomial ideal I of  R whose minimal generators are the monomials ml . . . .  mp 
ER let mij (and mji) denote the least common multiple, lcm(mi, mj), of mi and mj. 
If  now {~i: i =  1 . . . . .  p} is the standard basis for Rp and Sij = (mij/mi)~ - (mij/mj)Yj 
then Syz(ml . . . . .  mp) is generated by 

S = {S/j: l<<.i<j<<.p} (2) 

as an R-module. The Sij are called the minimal first syzygies of the monomial ideal I .  
For short proof of  this we refer to [1, p. 119] or [5, p. 322]. An analog result can 

be shown for Syz(gl . . . . .  9p) where {gl . . . . .  9p} is an arbitrary Gr6bner basis in R, see 
[4, p. 245]. 

Consider the elements Sij from (2). I f  we have three distinct indices i , j  and k such 
that mk devides mij, then mij is divisible by all three monomials mi, mj and mk, and 

hence also by mik and mkj. Since 

mij~ - --ejmij- . . . .  mij ( m i k e / _  mi,~k ~ + mij (mkjy  k mkjg.) . 
mi mj  mik \ mi mk / mkj \ mk mj  J ] 

We get that 

Sij E RSik -I- RSkj C E RS~c, g. (3) 
(~t, 13) 7~ (i,j) 

Assume now on the contrary that Sij E ~(~,~¢(i,j~RS=,# for some i< j .  By taking 
the projection down to the ith component we get an equation of the form 

mij :- E fi~ mi# ~ Jt~'~, m~i , (4) 
mi l~>i,B:/j mi u<i,~¢j mi 

where f,~,f~i E R. Multiplying through by mi and considering the coefficient of  the 
monomial mij both sides of  (4), we see that there must be a y # j  such that m,/i 
divides m/j, and hence m~ divides mij and 7 ¢ {i,j}. 
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Assume from now on that our monomial ideal I, which is minimally generated 
by ml . . . . .  mpER, is generic, that is, no variable Xt appears with the same nonzero 
exponent in two generators mi and mj of 1. Let S be as in (2), we have then 

Lemma 5.1. For a generic monomial ideal L minimally generated by ml . . . . .  rap, there 
is a unique minimal subest M of S that generates Syz(ml . . . . .  mp) as an R-module. 
M consists of  all Sij ~ S  such that mklmij ¢=~ k E {i,j}. 

Proof. Let us first show that M generates Syz(ml . . . . .  mp). It suffices to show that 
each Sij is an R-linear combination of elements of M, that is Sij E SpanR(M): If not 
every Sq E S is in Spann(M), there is an Sij not in Spann(M ) with the correspond- 
ing monomial mij minimal w.r.t, the partial order among monomials in R defined by 
divisibility. We have in particular that Sij q[M, and hence there is a k ~{i , j}  such 
that mklmij. Hence we have that both mik and mkj divide mij and since I is genetic, 
neither mik nor mkj is equal to mij. Therefore both Sik and Ski are in SpanR(M ) 
by minimality of mij, and hence by (3) Sij E SpanR(M), a contradiction. Therefore 
Span R (M) = Syz(ml, . . . ,  mp). 

Finally, the fact that M is a minimal subset of S generating Syz(ml, . . . ,mp) and 
unique, is a simple consequence of the fact that no element S/j E S is an R-linear 
combination of  other elements in S, since (4) would imply Sij riM. [] 

If  we for each i E { 1 . . . . .  p} let xi denote the point in No d that corresponds to the 
monomial mi (that is, (al . . . . .  aa)~--~X~ j . . . X j  d ) then we see that the number of  
elements in M is simply the number of edges of the graph G =  (V,E) with vertex set 
V = {xl . . . . .  ~p} and edgeset E = {{~/,~j}: xi V ~j ~>xk ¢~ k E {i,j}} (here ~i V b is the 
'join' of  ~i, b E No d, that is, the least element in NOd greater than or equal to both ti 
and b, w.r.t, the usual partial order of  NOd.) The number of edges in E is at most the 
maximal number of edges of a graph on p vertices of  dimension d. 

It is easy to see that an embedding of a graph G of dimension d into No d, can 
be done in a genetic manner. Hence if M ( p , d )  is as in Problem 1.1 then there is a 
generic monomial ideal I generated minimally by ml . . . . .  rnp E R = k[Xl . . . . .  Xa] such 
that the set M form Lemma 5.1, has precisely M ( p , d )  elements. 

Hence we get the following corollary from Theorem 1.3: 

Corollary 5.2. I f  a is a real number >3/8  then there exists an integer Pa such 
that for any 9eneric monomial ideal I generated minimally by p>  pa monomials 
ml . . . . .  mp in 4 variables, Syz(ml . . . . .  mp) can be generated by ap 2 minimal first syzy- 
gies. Moreover, 3/8 is the least real number with this property. 

Similarly one can write down a corollary of Theorem 4.1 about monomials in 5 
variables instead of 4, by replacing the number '3/8' with '40/81' in Corollary 5.2. 
In that case, however, the least number playing the role of '40/81' is not 40/81 itself 
necessarily, but a real number in the closed interval [24/50,40/81]. 
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We have so far given 'down-to-earth' algebraic interpretations of the main results in 
previous sections in terms of generic monomial ideals and their minimal first syzygies. 
We will now explain briefly how further informations can be obtained from Theo- 
rem 1.3 in a more general setup, which is described thoroughly in [3, Section 3]. 

For a given generic monomial ideal I c_ R, the first syzygy-module is uniquely deter- 
mined by the minimal elements of I, w.r.t, the partial order defined by divisibility, and 
hence can be denoted by Syz(I) or Syz(R/1) without any danger of ambiguity. Hence 
the minimal set M from Lemma 5.1 also depends solely on I or on the quotient R/I. 
The number of elements of  M, IMI, turns out to be fl2(R/I), the second Betti number 
of  R/l: 

Following the setup of Section 3 in [3], for any W C {1,2 . . . . .  p} denote lcm{mi: i E 
W} by mw. Let At be the Scarf complex of I, as the abstract simplicial complex on 
the set {1,2 . . . . .  p} defined by 

AI={UC_{1 ,2  . . . . .  p}: m u # m w  for all W C U } .  

This complex is of dimension d - 1, in the sense that the largest number of elments 
of a set U in AI is d -  1. Because of the geometric fact that At can be viewed as 
a subcomplex of the boundary complex of a polytope in Ea, then each U E AI with 
IU[ = j E  {1 . . . . .  d} is called a j - 1-face of A1. 

Now, for a graph G = (V,E) of order dimension d there is an embedding 0: VUE 
[X~ . . . . .  Xa] (the set of  monomials of the polynomial ring R =k[X1,. . .  ,Xa]) such that 
if V = {v~ . . . . .  Vp} and E C {{l)i, Vj}: 1 <~i<j<~p} then 0 satisfies 

1. O({vi, vj}) = lcm{O(vg), 0(vj)} 

2. O(Ok)]O({Vi, Vj} ) ~ kE {i,j}. 
Let Io be the monomial ideal generated by {O(vi): i = 1 . . . . .  p}. We see that the inci- 
dence poset of G is simply the poset induced by Aio by considering the 0 and 1 faces 
of  At0 only. Hence to determine the maximal number of edges of a graph on p vertices 
of dimension d, is the same as determining the maximal number of 1-faces of a Scarf 
complex At among all monomial ideals I, which we can assume to be generic, in d 
variables minimally generated by p monomials. By Corollary 3.3 in [3] the number of 
j-faces of A1 is equal to the Betti number ~j+t(R/I). Hence for general d our problem 
of  detemining M ( p , d )  is a special case of the Upper Bound Problem [3, p. 12]: 

Problem 5.3. For i E {1, . . . ,d}  determine fli(d,p), the maximal Betti number among 
all ideals, minimally generated by p monomials in d variables. 

It is easy to see that these maximal Betti numbers are attained among generic and 
artinian monomial ideals (that is, ideals I where R/I is finitely dimensional over the 
field k.) The Scarf complex of a generic artinian ideal I turns out to be the boundary of 
a simplical polytope, with one facet removed. Hence for a given generic artinian ideal I 
generated minimally by p monomials in d variables we have that for j E {0, 1 . . . . .  d - 2 }  
the number j )  of j-faces of AI, together with )ca- t which is the number of the d - 1- 
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facets of A: + 1, satisfy the Dehn-Sommerville equations [17, p. 252]: 

d 

i=j 

which, in fact, is the complete list of all linear equations among f - l , f o  . . . . .  fd- l .  
Note that f _  l = 1 always, and )Co = p, the number of generators of 1. By definition of 
fli(d, p)  we have therefore for a given monomial ideal I, that the numbers of faces of 
Az satisfy 

f0 =/~1 (d, p)  = p, 

fj<.~j+,(d,p) for j c  {1 . . . . .  d - Z } ,  

fa--~ <<.[3a(d, p) + 1. 

Consider now the Dehn-Sommerville equations in the case d = 4: 

fo--  fl-t- f2--  f3=O, 

f2 -- 2f3 = 0. (5) 

If  now I is a generic artinian monomial ideal, minimally generated by p monomials 
and with f l  maximal, that is f l  = M ( p , 4 ) ,  then we get from (5) 

f o = p ,  

f ,  = M(p,  4), 

f2 = Z M ( p , 4 ) -  2p, 

f3 = M ( p , 4 )  - p, 

and hence we see that each J~, where j E {0, 1,2,3}, is maximal if f0-~ P is fixed and 
f l  is maximal. Thus we conclude that the maximal Betti numbers for monomial ideals 
in 4 variables satisfy 

/~1(4, p)  = p ,  ~2(4 ,p)=M(p,4) ,  
/~3(4, p) = 2M(p,  4) - 2p, (6) 
/~4(4, p)  = M ( p , 4 )  - (p  + 1). 

For functions F, G : ~ ~ ~ denote limp~o~ F ( p ) / G ( p ) =  1 by F(p)  ~ G(p). We 
have an asymptotic solution of Problem 5.3 from Theorem 1.3 in the case d---4. 

Corollary 5.4. The maximal Betti numbers for a monomial ideal minimally 9enerated 
by p monomials in 4 variables satisfy 

/31(4, p) = p, /~2(4, p)  ~ 3p2/8, 

fl3(4, p)  ,~ 3p2/4, ~4(4, p)  ~ 3p2/8. 
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Similar ly the D e h n - S o m m e r v i l l e  equations in the case d = 5 are 

f o - A  + f 2 -  f3+ f4=2, 
2f~ - 3f2 + 4f3 - 5 f4  = 0, 

2 f l  - 3f2 + 6f3 - 10f4  = 0  

from which we can, in the same way as in the case d = 4, deduce that 

i l l(5,  p )  = p ,  fl2(5, p ) = M ( p , 5 ) ,  
/~3(5, p )  = 4M(p,  5) - 10p + 20, 

fl4(5, p )  = 5M(p,  5) - 15p + 30, 

f15(5, p )  = 2 M ( p , 5 )  - 6 p +  11. 

F rom (6) and (8)  we conclude 

(7) 

(8) 

Coro l l a ry  5.5. The Upper Bound Problem, Problem 5.3, is equivalent to Problem 1.1 
for dimensions d <<, 5. 

Remark .  The D e h n - S o m m e r v i l l e  equat ions are [a ]  l inear  equat ions relat ing d + 1 

u n k n o w n s  f - l , fO,  f l , . . . , f d - 1 .  Since ( d +  1 ) -  F~] = [d+l]2 i>4 for d~>6, we see that 

it will  be impossible  to express each J),  where j E { - 1 , 0 ,  1 . . . . .  d - 1 ),  as a l inear  

combina t ion  o f  some fixed three f - v a r i a b l e s  f~,  f/~, and fy. Just as (6)  and  (8) were 

based on expressing each J)  as a l inear  combina t ion  o f  f - l ,  f0 and f l ,  that can not  

be done for d imensions  d 1> 6. 
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