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Abstract

In this paper, we initiate a combinatorial approach to proving correlation inequalities for /nite
partially ordered sets. A new proof is provided for the strong form of the XYZ theorem, due to
Fishburn. We also use our method to give a new proof of a related correlation result of Shepp
involving two sets of relations. Our arguments are entirely combinatorial in the sense that they
do not make use of the Ahlswede=Daykin theorem or any of its relatives.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

There are a number of results in the theory of partially ordered sets that have the
same ;avor; that of correlation inequalities. The basic theme is to treat the set E(P)
of all linear extensions of the poset P as a probability space, with all elements equally
likely, and investigate circumstances under which events are positively correlated in this
space. The most famous of these results is the XYZ Inequality, proved by Shepp [9]
in 1982. This states that, if x, y and z are three elements of P, then the events x¿y
and x¿z are non-negatively correlated in E(P).
Shepp’s proof of the XYZ Inequality uses the FKG Inequality, while the subsequent

proof of a stronger result by Fishburn [4] uses the more general Ahlswede=Daykin
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Four Functions Theorem [1]. While the proof of the Four Functions Theorem is not
especially hard, there has been continuing interest in providing a more elementary
proof of the XYZ Inequality. We give such a proof in this paper, yielding Fishburn’s
stronger form. We do not claim that our proof is signi/cantly simpler than Fishburn’s—
it is certainly not simpler than Shepp’s proof—however, we hope that our method will
provide fresh insights into correlation inequalities in general, and might lead to proofs
of some outstanding conjectures in this area. We also illustrate our approach with proofs
of two other results, all previous proofs of which use the Four Functions Theorem or
a relative.
We begin with a brief review of the notation for linear orders and linear extensions

which we will use in this paper. Readers who are more familiar with this background
material are encouraged to proceed immediately to the next section.
Let n be a positive integer. We let [n] = {1; 2; : : : ; n}, and when 06k6n, we let

( [n]k ) denote the set of all k-element subsets of [n]. To display a function f from [n]
to a set X explicitly, we write f= [x1; x2; : : : ; xn] to indicate that f(i)= xi for each
i=1; 2; : : : ; n. When X is a /nite set with |X |= n, we consider a linear order on X to

be a function L : [n] 1−1→
onto
X . For each x∈X , the unique integer i∈[n] for which L(i)= x

is called the height of x in L and is denoted by hL(x). We write x¡y in L when
hL(x)¡hL(y).
Now let P be a /nite partially ordered set (poset) on a ground set X of cardinality

n. A linear order L on X is a linear extension of P if hL(x)¡hL(y) whenever x¡y
in P. We let E(P) denote the family of all linear extensions of P.
For a distinct pair x; y∈P, let EP[x¿y] = {L∈E(P): x¿y in L}. Then the proba-

bility that x is over y, denoted by prob[x¿y], is de/ned by

prob[x¿y] =
|EP[x¿y]|
|E(P)| : (1)

We shall extend this notation to more complex events when necessary: for instance
prob[x¿y; x¿z] denotes the proportion of linear extensions of P in which x is over
both y and z.
When the poset P is clear from the context and S is a subset of the ground set of P,

we use the notation E(S) for the set of all linear extensions of the subposet determined
by S.
In the remainder of the paper, we will be constructing functions mapping a domain

set to a range set. To assist the reader in keeping track of the various sets and subsets,
we will reserve the letters D and �, sometimes with subscripts, for objects associated
with the domain set, and we will reserve the letters R and � for objects associated
with the range set.
When S is an r-element set of integers, and we say that the elements of S are

labelled s1; s2; : : : ; sr , we always mean that s1¡s2¡· · ·¡sr .

2. The XYZ theorems of Shepp and Fishburn

For x, y and z distinct elements of a poset P, to say that the events x¿y and x¿z
are non-negatively correlated in the space E(P) of linear extensions of P means to
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say that

prob[x¿y] prob[x¿z]6prob[x¿y; x¿z]:

Using the standard notation for conditional probability, we see that this is equivalent
to saying that

prob[x¿y]6prob[x¿y|x¿z]:
provided prob[x¿z]¿0.
The following theorem, known as the “XYZ theorem”, was /rst proved by Shepp [9]

using the FKG inequality and a clever de/nition of a distributive lattice to produce an
analogous result for the space of order-preserving maps, and then deriving the result
for the space of linear extensions by taking limits.

Theorem 2.1. Let x, y and z be distinct points in a poset P. Then

prob[x¿y] prob[x¿z]6prob[x¿y; x¿z]:

In [4], Fishburn used repeated applications of the Ahlswede–Daykin Four Functions
Theorem [1], and some complex de/nitions of auxiliary distributive lattices, to prove
the following “strong” version of the XYZ theorem.

Theorem 2.2. Let {x; y; z} be a 3-element antichain in a poset P. Then

prob[x¿y] prob[x¿y]¡prob[x¿y; x¿z]: (2)

Since the inequality is trivial if any pair among the three elements is related in P,
Fishburn’s strong version yields Shepp’s XYZ theorem as a corollary. As we explain
later, Fishburn not only showed that the inequality is strict except in trivial cases, but
also quanti/ed the minimum extent of the correlation.
We shall give a new proof of Theorem 2.2 in Section 4, using a method which

avoids the use of the Four Functions Theorem. In the next section, we give a proof of
a lemma used by Fishburn in [4]. Our new proof does not rely on this lemma, but it
does provide a simple illustration of our general method.
In Section 5, we give a variant of our approach which yields a proof of another

theorem of Shepp [8]. As pointed out by Brightwell [2], this result can be used to give
a very quick proof of Fishburn’s Lemma, and indeed our proof of Shepp’s Theorem
can be seen as a generalization of our proof of Fishburn’s Lemma. One advantage
of our new proof of Shepp’s Theorem is that the cases of equality can be deduced
quickly, which seems not to be the case for the original proof.
We /nish by discussing some open problems for which our new method might prove

useful.

3. A new proof of Fishburn’s lemma

The starting point for this paper is a new proof of the following lemma of
Fishburn [4], a result which played a key role in his proof of Theorem 2.2.
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Lemma 3.1. Let A and B be down-sets in a poset P. Then

|E(A)| |E(B)|
|E(A∪B)| |E(A∩B)|6

|A|!|B|!
|A∪B|!|A∩B|! : (3)

Actually, we will /nd it convenient to prove the following result which is easily
seen to be equivalent to Lemma 3.1.

Lemma 3.2. Let A and B be down-sets in a poset P with |A|=n, |B|=m and |A∩B|
= k. Then

|E(A)| |E(B)|
(
n+ m

n

)
6|E(A∪B)| |E(A∩B)|

(
n+ m

n+ m− k

)
: (4)

Proof. Set

D=E(A)×E(B)×
(
[n+ m]

n

)

and

R=E(A∪B)×E(A∩B)×
(

[n+ m]

n+ m− k

)
:

Our aim is to prove that |D|6|R|.
For each triple �=(L;M; S)∈D, a function �� : [n+m]→A∪B can be derived natu-

rally from � by, loosely speaking, merging the linear orders L and M according to the
template provided by S. More precisely, given �=(L;M; S), with S = {s1; s2; : : : ; sn}
and [n+ m]− S = {t1; t2; : : : ; tm}, de/ne the function �� by setting:

• ��(i)=L(j) whenever i∈S and i= sj,
• ��(i)=M (j) whenever i∈[n+ m]− S and i= tj.

We set  D= {��: �∈D} and refer to the functions in  D as domain patterns.
It is obvious that any �∈ D satis/es the following properties.

(a) For each u∈(A−B)∪(B−A), there is a unique integer u1∈[n+m] so that �(u1)= u.
(b) For each x∈A∩B, there are exactly two integers x1; x2∈[n + m] with x1¡x2 so

that �(x1)= �(x2)= x.

In the remainder of the proof, whenever the pattern � is clear from the context, we
will use the notation of (a) and (b) without comment.
We treat the set R in exactly the same way: for each triple �=(J; K;W )∈R, we

de/ne a function �� mapping [n+m] to A∪B by setting W = {w1; w2; : : : ; wn+m−k} and
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[n+ m]−W = {z1; z2; : : : ; zk}, and de/ning �� by

• ��(i)= J (j) whenever i∈W and i=wj,
• ��(i)=K(j) whenever i∈[n+ m]−W and i= zj.

We let  R= {��: �∈R} and refer to the functions in  R as range patterns. Range
patterns also satisfy (a) and (b), and are subject to the same notational conventions.
From now on, we /x �∈ D, and consider the sets Dom(�)= {�∈D: ��= �},

and Ran(�)= {�∈R: ��= �}. By de/nition Dom(�) is non-empty. Our claim is that
|Dom(�)|= |Ran(�)|: combining this result for every � evidently implies that |D|6|R|,
as desired.
Given �, an element �=(L;M; S) of Dom(�) is determined uniquely by the choice,

for each element x of A∩B, of whether S contains x1 or x2—this choice determines
linear orders L and M on A and B, respectively, produced by restricting � to the sets
S and [n+m]−S. We say that x is oriented low–high if x1∈S, and high–low if x2∈S.
Of course, we are not normally free to choose all these orientations independently, as
we also require that L and M are linear extensions. This produces constraints of the
following types.

(i) For each x∈A∩B and u∈A − B, with x¡u in P and x1¡u1¡x2, x must be
low–high.

(ii) For each x∈A∩B and u∈B − A, with x¡u in P and x1¡u1¡x2, x must be
high–low.

(iii) For each x; y∈A∩B, with x¡y in P and x1¡y1¡x2¡y2, x and y must be
oriented the same way.

Indeed, suppose for instance that we have x¡u in P for x∈A∩B and u∈A−B. If the
order given by � is u1¡x1¡x2, then either orientation of x will give hL(u)¡hL(x),
so that L is not a linear extension of A—this contradicts the assumption that �∈ D.
On the other hand if x1¡x2¡u1, then either orientation ful/ls the requirement that
hL(x)¡hL(u). In the case where x1¡u1¡x2, we will have hL(x)¡hL(u) if x1 is in S,
but not if x2 is, i.e., if and only if x is oriented low–high: hence we get a constraint
of type (i). The arguments in the other cases are similar. Note also that, since A
and B are down-sets, the only possible relations in A∪B other than those covered by
(i)–(iii) above are those inside A−B or B−A, and these are necessarily respected by
L and M regardless of the orientations of elements of A∩B.
We say that x∈A∩B is rigid if there exists an element u∈(A − B)∪(B − A) for

which x¡u and x1¡u1¡x2. So for each rigid element x, the orientation of x is dictated
by a constraint of type (i) or (ii).
Next, we de/ne an auxiliary graph G=G� whose vertex set is A∩B, with {x; y} an

edge in G whenever x¡y in P and x1¡y1¡x2¡y2. The constraints of type (iii) can
be summarized as saying that, for each component C of G, all elements of C have
the same orientation (we then say that C itself has this orientation). Since �∈ D,
a component has at most one orientation: i.e., it does not contain both a rigid element
that is forced to be low–high and one that is forced to be high–low.
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Now let A∩B=C1∪C2∪· · ·∪Ct be the partition of the vertex set of G into com-
ponents. We say that a component is rigid if it contains a rigid element of A∩B, and
free otherwise.
Let r be the number of free components. It follows from our previous arguments that

Dom(�)= 2r , since an element of Dom(�) is speci/ed uniquely by the orientations of
the free components.
Let us turn now to describing Ran(�), for the same /xed �∈ D. Again, to specify

an element �∈Ran(�) we must specify, for each element x of A∩B, whether x1∈W
(x is low–high) or x2∈W (high–low). The constraints on these choices are exactly
the same as those in (i)–(iii) above, except that the type (ii) constraints now require
the aRected elements x to be low–high—thus all rigid elements are now forced to be
low–high. The construction of G� is unaltered by this change, as is the characterization
of components as rigid (all elements are forced to be low–high) and free. Thus we
have |Ran(�)|=2r .
This completes the proof.

Let us make a couple of observations about the proof. First, note that we naturally ob-

tain an explicit injection f from D toR, formed from a bijection f� :Dom(�) 1−1→
onto

Ran(�)

for each �∈ D. Indeed, for �=(L;M; S)∈Dom(�), We determine a triple (J; K;W )=
f�(�)∈R as follows.

(1) If j∈[n+ m] and �(j)∈(A− B)∪(B− A), then j∈W .
(2) If x∈A∩B and x belongs to a free component of the auxiliary graph G, then

W ∩{x1; x2}= S∩{x1; x2}.
(3) If x∈A∩B and x belongs to a rigid component of the auxiliary graph G, then

W ∩{x1; x2}= {x1}.
(4) From the preceding rules, we have determined a set W ∈( [n+m]

n+m−k ). Let W =
{w1; w2; : : : ; wn+m−k} and [n + m] −W = {z1; z2; : : : ; zk}. Finally, de/ne the linear
orders J and K by setting J (i)= �(wi) for each i∈[n+ m− k] and K(j)= �(zj)
for each j∈[k].

Also, we should point out why our proof does not show that |D|= |R|. The reason is
that there can be patterns in  R − D, namely patterns � where there is a component
of G� containing both a rigid element x that is forced by a constraint of type (i)
to be low–high in �, and an element x′ forced by a constraint of type (ii) to be
high–low.
Here is the smallest such example. Consider the three element poset consisting of

two maximal points a and b, each of which covers the element x. Then let A= {a; x}
and B= {b; x}. There are four patterns in  D, namely �1 = [x; a; x; b], �2 = [x; b; x; a],
�3 = [x; x; a; b] and �4 = [x; x; b; a]. Each of �1 and �2 has a trivial auxiliary graph with
a single non-free component, so |Dom(�1)|= |Dom(�2)|= |Ran(�1)|= |Ran(�2)|=1.
Furthermore, each of �3 and �4 have a trivial auxiliary graph with a single free
component, so |Dom(�3)|= |Dom(�4)|= |Ran(�3)|= |Ran(�4)|=2. The two patterns
�5 = [x; a; b; x] and �6 = [x; b; a; x] belong to  R − D.
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4. A new proof of the strong XYZ theorem

Let X denote the ground set of the poset P, so that n= |X |¿3. Following Fishburn,
we observe that EP[x¿y]=EP[x¿y; x¿z]∪EP[z¿x¿y], EP[x¿z]=EP[x¿y; x¿z]∪
EP[y¿z¿z], andE(P)=EP[z¿x¿y]∪EP[y¿x¿z]∪EP[x¿y; x¿z]∪EP[y¿x; z¿x].
It follows that inequality (2) is equivalent to

|EP[z¿x¿y]| |EP[y¿x¿z]|¡|EP[x¿y; x¿z]| |EP[x¡y; x¡z]|: (5)

We will also follow Fishburn in proving a somewhat stronger statement than that of
Theorem 2.2. De/ne the quantity )n by

)n=

{
(n− 1)2=(n+ 1)2; n odd;

(n− 2)=(n+ 2); n even:

Note that regardless of the parity of n, we always have )n¡1. It is also easy to check
that )n is increasing in n.
The remainder of the proof will be devoted to proving the following inequality:

|EP[z¿x¿y]| |EP[y¿x¿z]|6)n|EP[x¿y; x¿z]||EP[x¡y; x¡z]|: (6)

As was pointed out by Fishburn [4], the poset consisting of an (n− 2)-element chain
in which x appears as close to the middle as possible, together with two other points,
y and z, each incomparable to all others, shows that his inequality (6) is tight.
Our argument for proving that inequality (6) holds is similar to the one given in the

preceding section; however, the concept of a pattern must be modi/ed somewhat, and
there is a rather involved technical calculation, which is deferred to an Appendix A.
Let L be a linear order on X , and set AL(x)= {u∈X : hL(x)¡hL(u)} and BL(x)=

{u∈X : hL(u)¡hL(x)}. Here we use the letters A and B to suggest above and below,
respectively.
Then let D=EP[z¿x¿y]×EP[y¿x¿z], R=EP[x¿y; x¿z]×EP[x¡y; x¡z], and

D= {(BL(x)∩BM (x); AL(x)∩AM (x)): (L;M)∈D}:
For each (B; A)∈D, set D(B; A)= {(L;M)∈D: BL(x)∩BM (x)=B; AL(x)∩AM (x)=A}.
Then there is a natural partition

D=
⋃

{D(B; A): (B; A)∈D}:
Dually, we de/ne

R= {(BJ (x)∩BK (x); AJ (x)∩AK (x)): (J; K)∈R}:
For each (B; A)∈R, set R(B; A)= {(J; K)∈R: BJ (x)∩BK (x)=B; AJ (x)∩AK (x)=A}.
Then there is a natural partition

R=
⋃

{R(B; A): (B; A)∈R}:
To complete the proof, it suTces to show that |D(B; A)|6)n|R(B; A)| for every

(B; A)∈D. So for the remainder of the argument, we /x a pair (B; A)∈D, setting
b= |B| and a= |A|.
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Now we discuss patterns. In this section, the concept will be slightly diRerent from
the one discussed previously. Informally, a domain pattern results from taking a pair
(L;M)∈D(B; A) and identifying the occurrence of x in the two orders. The elements
below x in the orders are then merged, as are the elements above x. The end result is
a function � : [2n− 1]→X .
More formally, we de/ne the set D0 to consist of all 4-tuples of the form
(L;M; S1; S2), where

(1) (L;M)∈D(B; A);
(2) for q1 and q2 de/ned by setting hL(x)= b+ q1 + 1 and hM (x)= b+ q2 + 1, S1 is

a subset of [2b+ q1 + q2] of size b+ q1, and S2 is a subset of [2a+ q1 + q2] of
size a+ q2.

From each 4-tuple �=(L;M; S1; S2)∈D0, we derive a function �= �� from [2n− 1] to
X as follows:

(1) �(2b+ q1 + q2 + 1)= x.
(2) Label the elements of S1 as s1; s2; : : : ; sb+q1 and label the elements of

[2b+ q1 + q2]− S1 as t1; t2; : : : ; tb+q2 . Then for each i∈[2b+ q1 + q2], if i= sj∈S1,
then �(i)=L(j), and if i= tj∈[2b+ q1 + q2]− S1, then �(i)=M (j).

(3) Label the elements of S2 as s′1; s
′
2; : : : ; s

′
a+q2 and label the elements of [2a + q1 +

q2] − S2 as t′1; t
′
2; : : : ; t

′
a+q1 . Then for each i∈[2a + q1 + q2], if i= s′j∈S2, then

�(2b+ q1 + q2 + 1+ i)=L(b+ q1 + 1+ j), and if i= t′j∈[2a+ q1 + q2]− S2, then
�(2b+ q1 + q2 + 1 + i)=M (b+ q2 + 1 + j).

As before, we let  D= {��: �∈D0} denote the set of all domain patterns.
For �= ��∈ D and u∈X − {x}, there are two elements u1; u2∈[2n − 1] such that

�(u1)= �(u2)= u and u1¡u2. Suppose �= �� where �=(L;M; S1; S2), and de/ne q1
and q2 as above. For each u, exactly one of u1 and u2 is in S1∪S2: if it is u1, then
we say u is oriented low–high in �; if it is u2, we say u is oriented high–low. Each
of the q1 elements of BL(x)∩AM (x) is oriented low–high in �, while each of the q2
elements of AL(x)∩BM (x) is high–low. Note also that, while the sets A and B can be
determined from the domain pattern, the numbers q1 and q2 prescribing the height of
x in L and M cannot—although their sum q1 + q2 = n− a− b− 1 can.
This discussion is repeated in an analogous manner to determine a set R0 of

4-tuples of the form (J; K;W1; W2) with (J; K)∈R(B; A). From each �=(J; K;W1; W2),
we derive a function �= �� mapping [2n − 1] to X . We then let  R= {��: �∈R0}
denote the set of all range patterns. As before, it will turn out that  D⊆ R, but that
in general there are range patterns that are not domain patterns.
As in the preceding section, given a domain pattern �∈ D, we set Dom(�)=

{�∈D0: ��= �} and Ran(�)= {�∈R0: ��= �}.
Now let �∈ D. We describe Dom(�) and Ran(�), showing in particular that the

two sets have the same size. As in the previous section, we de/ne an auxiliary graph
G�, now with vertex set X −{x}. However, the rule for adjacency is much the same: if
u; v∈X−{x} and u¡v in P, then {u; v} is an edge in G� if and only if u1¡v1¡u2¡v2.
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As before, it is clear that, for any �∈Dom(�) and any component C of G�, all elements
of C have the same orientation in �—we deem the component to be oriented low–high
or high–low in � accordingly. Indeed, for /xed �, the only other constraints on the
orientations of the elements are that y is necessarily low–high and z high–low in any
�∈Dom(�).
This shows that, for �∈ D, y and z are in diRerent components of G�. (Typically,

there are range patterns � in which y and z are in the same component of G�—
these are not domain patterns.) If C1; : : : ; Ct are the components of G�, labelled so
that y is in Ct−1 and z in Ct , then an element �∈Dom(�) is speci/ed uniquely by
the orientations of the components C1; : : : ; Ct−2. Hence |Dom(�)|=2t−2. Similarly, to
choose an element �∈Ran(�), we must orient both Ct−1 and Ct low–high, and we
may orient the other components freely. Hence also |Ran(�)|=2t−2.
So far, the argument has been very similar to that in the previous section. How-

ever, the quantities we have to deal with are not simply |D0|=
∑
�∈ D |Dom(�)| and

|R0|=
∑
�∈ R |Ran(�)|, since diRerent pairs (L;M)∈D(B; A) give rise to diRerent num-

bers of 4-tuples (L;M; S1; S2) in D0, and similarly for R0. Indeed, for (L;M)∈D(B; A),
with q1 and q2 de/ned as before, there are ( 2b+q1+q2b+q1

)( 2a+q1+q2a+q2
) ways to choose S1 and

S2, each of which gives an element of D0.
To count D(B; A), we thus need to attach a weight of ( 2b+q1+q2b+q1

)−1( 2a+q1+q2a+q2
)−1 to

each element �=(L;M; S1; S2) of D0. We therefore have

|D(B; A)|=
∑
�∈ D

∑
�∈Dom(�)

(b+ q1)!(b+ q2)!
(2b+ q1 + q2)!

(a+ q1)!(a+ q2)!
(2a+ q1 + q2)!

:

Recall that q1 = q1(�) and q2 = q2(�) depend on �, although q1 + q2 = n − a − b − 1
depends only on (B; A). Similarly

|R(B; A)|=
∑
�∈ R

∑
�∈Ran(�)

(b+ q1)!(b+ q2)!
(2b+ q1 + q2)!

(a+ q1)!(a+ q2)!
(2a+ q1 + q2)!

:

Here q1 = q1(�) and q2 = q2(�) depend on �, being de/ned by hJ (x)= b+ q1 + 1 and
hK (x)= b+ q2 + 1, where �=(J; K;W1; W2). Again q1 + q2 = n− a− b− 1.
It therefore suTces to show that, for each �∈ D∑

�∈Dom(�)

(b+ q1(�))!(b+ q2(�))!(a+ q1(�))!(a+ q2(�))!

6)n
∑

�∈Ran(�)

(b+ q1(�))!(b+ q2(�))!(a+ q1(�))!(a+ q2(�))!: (7)

Although |Dom(�)|= |Ran(�)|, there seems to be no easy way to establish inequal-
ity (7) via a 1–1 correspondence between the terms of the two sums. Instead, we
establish the inequality via a very natural 2–2 correspondence. (In the case where t=2
and the sets each contain a single element, this will amount to double counting the
single term in each sum.)
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We have seen that the elements of �∈Dom(�) are in 1–1 correspondence with
choices of orientation for the components C1; C2; : : : ; Ct−2, and that the same statement
holds for the elements �∈Ran(�). Given �, let �′ denote the element of Dom(�)
obtained from � by orienting each of these t − 2 components in the opposite manner.
Then let � be the element of Ran(�) obtained by orienting each of C1; C2; : : : ; Ct−2

as in �, and let �′ be the element obtained by orienting each component as in �′. Of
course, Ct−1, the component containing y, is oriented low–high in all four cases, while
Ct is oriented high–low in � and �′ and low–high in � and �′.
We claim that, for any �=(L;M; S1; S2)∈Dom(�),

(b+ q1(�))!(b+ q2(�))!(a+ q1(�))!(a+ q2(�))!

+ (b+ q1(�′))!(b+ q2(�′))!(a+ q1(�′))!(a+ q2(�′))!

6)n((b+ q1(�))!(b+ q2(�))!(a+ q1(�))!(a+ q2(�))!

+ (b+ q1(�′))!(b+ q2(�′))!(a+ q1(�′))!(a+ q2(�′))!); (8)

which will clearly imply inequality (7) and hence the full result.
To establish the claim, we next need to see how the various qi are related. Let

qy be the number of elements in the component Ct−1 that are in BL(x)∩AM (x). Let
r= q1(�)− qy, so r counts the elements of BL(x)∩AM (x) that are in one of the com-
ponents C1; : : : ; Ct−2 (any such component is oriented low–high in �). Similarly let
qz = |Ct∩AL(x)∩BM (x)| and s= q2(�)−qz. Observe that q1(�′)= qy+s, q2(�′)= qz+r,
q1(�)= qy + qz + r, q2(�)= s, q1(�′)= qy + qz + s, q2(�′)= r.
Therefore the result will follow from the technical lemma below, whose straight-

forward proof is deferred to Appendix A.

Lemma 4.1. For non-negative integers n, a, b, qy¿1, qz¿1, r and s with a + b +
qy + qz + r + s= n− 1, we have

(b+ qy + r)!(b+ qz + s)!(a+ qy + r)!(a+ qz + s)!

+ (b+ qy + s)!(b+ qz + r)!(a+ qy + s)!(a+ qz + r)!

6)n((b+ qy + qz + r)!(b+ s)!(a+ qy + qz + r)!(a+ s)!

+ (b+ qy + qz + s)!(b+ r)!(a+ qy + qz + s)!(a+ r)!):

5. Shepp’s theorem for disjoint unions

Let P be a poset with ground set X . Given a set Q⊂X ×X with x incomparable
to y in P for all (x; y)∈Q, we extend our previous notation by setting

EP[Q] = {L∈E(P): x¡y in P for all (x; y)∈Q}:
In this section, we provide a combinatorial proof of the following theorem of

Shepp [8]. Shepp’s approach was again to use the FKG inequality to prove the analo-
gous result for order-preserving maps, and to derive this result in the limit.
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Theorem 5.1. Suppose that the ground set X of a poset P is the disjoint union of Y
and Z , and that y and z are incomparable in P whenever y∈Y and z∈Z . For arbitrary
subsets Q1; Q2 of Y ×Z , we have

|EP[Q1]| |EP[Q2]|6|EP[Q1∪Q2]| |E(P)|:

Proof. Let |X |= n. Set D=EP[Q1]×EP[Q2]× ( [2n]n ) and R=EP[Q1∪Q2]×E(P)×
( [2n]n ). Our aim is to show the existence of an injection from D to R.
As in the earlier proofs, we begin by assigning to each triple �=(L;M; S)∈D the

function �= �� : [2n]→X , obtained by merging the linear orders L and M on X ac-
cording to the template S. Again, we adopt the convention that, for every x∈X , the
two elements of �−1

� (x) will be denoted by x1 and x2 with x1¡x2.
As before, we let  D= {��: �∈D} denote the set of domain patterns. Dually, each

triple �∈R gives rise to a function �� : [2n]→X , and  R= {��: �∈R} denotes the
set of all range patterns. Also as before, for �∈ D we set Dom(�)= {�∈D: ��= �},
and similarly for Ran(�).

Claim 1.  D⊆ R and |Dom(�)|6|Ran(�)| for every �∈ D.

Proof. Let �∈ D. Choose a triple �=(L;M; S) ∈ Dom(�). We then use � to de/ne
a coloring /� of X using two colors, red and blue. An element y of Y is colored red
by /� if y1∈S, and blue otherwise, i.e., if y2∈S. Conversely, /� colors z∈Z red if
z2∈S, and blue otherwise. (So red means that the more helpful choice, in terms of Q1

and Q2 being respected, appears in L1.)
In what follows, we will develop a list of properties which /� must satisfy whenever

�∈Dom(�). To this end, we again de/ne an auxiliary graph G=G�. For y¡y′∈Y ,
join y and y′ by an edge in G if y1¡y′1¡y2¡y

′
2. Similarly, if z¡z′∈Z , join z and

z′ by an edge in G if z1¡z′1¡z2¡z
′
2. There are no edges in G of the form {y; z} with

y∈Y and z∈Z . Now, let X =C1; C2; : : : ; Ct denote the partition of X into components,
noting that each component is either a subset of Y or a subset of Z . For each x∈X ,
we let C(x) denote the component containing x. Our coloring rules require that if
�∈Dom(�), then /� will assign all vertices in any component the same color, so we
may speak of the color assigned by /� to a component of G.
We present a list of coloring requirements which must be satis/ed by any coloring

/� when �∈Dom(�) in order to respect the relations y¡z given by the elements (y; z)
of Q1. For a pair (y; z)∈Q1, the requirement depends on the order on the four integers
y1, y2, z1 and z2. Since �∈ D, it is clear that we cannot have z1¡z2¡y1¡y2 and, as
usual, the order y1¡y2¡z1¡z2 does not yield any restriction on the colors assigned
to C(y) and C(z). Four cases remain, and in each case, it is straightforward to verify
that the listed requirement(s) must be satis/ed by /� when �∈Dom(�).
Case 1. z1¡y1¡z2¡y2. C(y) and C(z) must both be colored red.
Case 2. y1¡z1¡z2¡y2. C(y) must be colored red.
Case 3. z1¡y1¡y2¡z2. C(z) must be colored red.
Case 4. y1¡z1¡y2¡z2. At least one of C(y) and C(z) must be colored red.
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Dually, for each pair (y; z)∈Q2, we have restrictions of exactly the same form, but
this time with red replaced by blue.
It is easy to see that |Dom(�)| is then the number of colorings of the set of compo-

nents of G� satisfying the coloring requirements added by the pairs (y; z) from Q1∪Q2.
In turn, this can be interpreted as the number of solutions of a 2-SAT instance 0 con-
structed as follows. For each component C of G, there is a variable vC in 0, which
is to be thought of as True if C is colored red, and False if C is colored blue. The
requirements for a coloring to correspond to an element of Dom(�) are all of the form
of 2-SAT clauses. To be precise:

• A requirement that component C must be colored red is represented by a clause
(vC), while a requirement that C must be colored blue is represented by a clause
(vC).

• A requirement that one of C and C′ be colored red is represented by a clause
(vCvC′), while a clause that one of C and C′ be colored blue is represented by
a clause (vCvC′).

We employ an analogous strategy for colorings associated with triples from Ran(�).
However, the 2-SAT instance 0′ now re;ects a single color and is obtained from 0
by replacing all negative literals by the corresponding positive ones. Now |Ran(�)| is
the number of solutions of the 2-SAT instance 0′.

To complete the proof, we show that 0′ has at least as many solutions as 0 by
establishing the following elementary claim.

Claim 2. For any instance 1 of SAT, de;ne 1′ by replacing all occurrences of the
negative literal Uu by u. Then 1′ has at least as many solutions as 1.

Proof. Let 2 be a solution to 1 such that the assignment 2′ obtained from 2 by
changing the truth value of u is also a solution to 1. Then 2 and 2′ are also solutions
to 1′.
If 2 is any other solution to 1, then a solution to 1′ can be obtained from 2 by

resetting u to True if necessary.
Thus there is an injection from the set of solutions of 1 to the set of solutions of

1′. With this observation, the proofs of Claim 2 and Theorem 5.1 are complete.

Brightwell [2] showed that the inequality in Theorem 5.1 is strict unless both Y
and Z can be partitioned into incomparable pieces Y =Y1∪Y2 and Z =Z1∪Z2, so that
Qi⊆Yi×Zi for i=1; 2. His proof is rather complicated, so it is interesting to note that
this extension follows very quickly from our proof, as we now show.
Suppose that there are relations (y; z)∈Q1 and (y′; z′)∈Q2 with y and y′ in the

same component of the comparability graph of P. Now consider any linear extension
L∈EP(Q1∪Q2) in which all of Y precedes all of Z , any linear extension M of P
where all of Z precedes all of Y , and S = {1; : : : ; n}. The range pattern �� arising from
�=(L;M; S) can be described as Y¡Z¡Z¡Y . We claim that this is not a domain
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pattern. Indeed, whenever x¡x′ in P, we have x1¡x′1¡x2¡x
′
2, so x and x

′ are adjacent
in the auxiliary graph G. In particular, y and y′ are in the same component C of G.
If �� is a domain pattern arising from some �, then, in the associated coloring, C
is red since (y; z)∈Q1 and y1¡z1¡z2¡y2, while C is blue since (y′; z′)∈Q2 and
y′1¡z

′
1¡z

′
2¡y

′
2. This contradiction shows that �� is not a domain pattern, and so the

inequality in Theorem 5.1 is strict.

6. Remaining challenges

It is disappointing to us that we have been unable to prove any new results using
our combinatorial approach. However, we do feel that this is a realistic goal, and in
this section we oRer a few problems that may yield to this method.
We start with a conjecture of Daykin and Daykin [3]. Given a poset P with ground

set X = {x1; : : : ; xn}, and posets Q1; : : : ; Qn, the lexicographic sum
∑
P Qi is de/ned

by taking disjoint copies of the Qi, and adding all relations of the form u¡v, where
u∈Qi, v∈Qj, and xi¡xj in P.

Conjecture 6.1. Let P0 be a poset whose ground set X0 is the disjoint union of two
chains Y0 = {x1; : : : ; xm} and Z0 = {xm+1; : : : ; xn}. (There may be some relations between
Y0 and Z0 in P0.)
Let S1; : : : ; Sn be any /nite posets, let Y be the union of the ground sets of S1; : : : ; Sm

and Z the union of the ground sets of Sm+1; : : : ; Sn. Set P=
∑
P0 Si. Let Q1 and Q2 be

arbitrary subsets of Y ×Z . Then

|EP[Q1]| |EP[Q2]|6|EP[Q1∪Q2]| |E(P)|:

Note that the case where Y0 and Z0 each have one element is exactly Shepp’s
Theorem from the previous section. Also, the case where each Si has just one element
(i.e., the result for P0, Y0 and Z0) is a result of Graham et al. [5]. This is therefore
a common generalization of the two theorems.
Intuition strongly suggests that Conjecture 6.1 is true, but it has so far resisted

proof. One reason for this is that the known proofs of Shepp’s Theorem and of the
Graham–Yao–Yao Theorem follow very diRerent lines, with Shepp’s proof arguing via
order-preserving maps and all proofs of the Graham–Yao–Yao Theorem (one clean
proof is due to Kleitman and Shearer [7]) arguing directly with linear extensions.
Our new proof of Shepp’s Theorem works with the linear extensions, so it seems to
reasonable to hope that it might form a basis for a proof of Conjecture 6.1.
We now turn to a correlation inequality of a completely diRerent type. Let P be

a /nite poset with ground set X , and /x x∈X . De/ne the sequence h1; h2; : : : ; hn,
where n= |X |, by

hi= |{L∈E(P): hL(x)= i}|:

This sequence is called the height sequence of x.
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The following theorem was originally proved by Stanley [10] using the Alexandrov=
Fenchel inequalities for mixed volumes (in fact, a much stronger result is proved).

Theorem 6.2. Let P be a poset with ground set X and set n= |X |. Then for each
x∈X , the height sequence h1; h2; : : : ; hn of x is log-concave, i.e.,

hihi+26h2i+1

for all i=1; 2; : : : ; n− 2.

Stanley’s proof of this result is both compact and elegant, and is the only one
known. It would be very interesting to have an alternative proof, especially because the
algebraic machinery of Stanley’s proof obscures the structural properties of the poset,
so for example, nothing seems to be known about the following natural questions.

Question 6.3. Under what circumstances is it true that the inequality hihi+26h2i+1 is
tight?

Question 6.4. If the inequality hihi+26h2i+1 is strict, what is the minimum size of the
error term?

(Compare with the relationship between the XYZ Inequality and Fishburn’s strong
form.) To date, we have only been able to make marginal progress in providing a com-
binatorial proof of Theorem 6.2. Speci/cally, we can settle the special case when the
height sequence contains exactly three non-zero terms. However, our approach does
not seem likely to extend to a proof for the general case, and we consider this eRort
a major challenge.
Another motivation comes from the following speci/c problem posed to us by

Kahn [6]. For an element x of an n-element poset P, with height sequence h1; : : : ; hn,
the average height of x is de/ned by

h(x)=
n∑
i=1

ihi:

Conjecture 6.5. Let P be a poset with a ground set X of size n, and let x and y be
distinct elements of X . Also, let m be an integer with 26m6n. If |{z∈X : z6x or
z6y}|=m, then

max{h(x); h(y)}¿m− 1:

Kahn noted that it follows easily from the log-concavity of the height sequence that
the conjecture holds when m= n. However, when n¿m, log-concavity alone seems to
allow the maximum of the two heights to fall all the way down to m log 2. Kahn also
noted a natural generalization of the question to k¿2 points.
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Appendix A. Proof of Lemma 4.1

We start with the case where r= s=0.

Claim A.1. Let n¿3 and let b and a be non-negative integers. Also, let qy and qz
be positive integers with b + a + qy + qz + 1= n. Then the maximum value of the
expression

0=
(b+ qy)!(b+ qz)!(a+ qy)!(a+ qz)!
(b+ qy + qz)!b!(a+ qy + qz)!a!

is )n.

Proof. Choose values of b, a, qy and qz which maximize the expression 0.
Now suppose that qy¿1. Then modify the parameters by decreasing qy by one and

increasing a by one. Then the new value 0̂ of the function is given by

0̂=
(b+ qy + qz)(a+ qz + 1)

(b+ qy)(a+ 1)
0¿0:

The contradiction shows that qy =1 and also, by symmetry, that qz =1.
Thus

0=
(b+ 1)(a+ 1)
(b+ 2)(a+ 2)

:

Now suppose that |b−a|¿2. Then without loss of generality, we may assume b¿a+2.
In this case, we modify the parameters by subtracting one from b and increasing a by
one. Then the new value 0̂ of the function is given by

0̂=
b(a+ 2)

(b+ 1)(a+ 3)

so

0̂
0

=
1 + 1=(a+ 1)(a+ 3)

1 + 1=b(b+ 2)
¿1:

The contradiction shows that |b− a|61, as claimed.
For n odd, it follows that b= a=(n− 3)=2, and so

0=
((n− 3)=2 + 1)2

((n− 3)=2 + 2)2
=

(n− 1)2

(n+ 1)2
= )n:

For n even, we may assume by symmetry that b=(n− 4)=2 and a=(n− 2)=2, which
yields

0=
((n− 4)=2 + 1)((n− 2)=2 + 1)
((n− 4)=2 + 2)((n− 2)=2 + 2)

=
n− 2
n+ 2

= )n:

This completes the proof of the claim.
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We now turn to the general case of Lemma 4.1. Recall that we have to prove that

(b+ qy + r)!(b+ qz + s)!(a+ qy + r)!(a+ qz + s)!

+ (b+ qy + s)!(b+ qz + r)!(a+ qy + s)!(a+ qz + r)!

6)n((b+ qy + qz + r)!(b+ s)!(a+ qy + qz + r)!(a+ s)!

+ (b+ qy + qz + s)!(b+ r)!(a+ qy + qz + s)!(a+ r)!); (A.1)

where all the parameters are non-negative integers, qy¿1, qz¿1, and n= b+ a+ qy+
qz + r + s+ 1.
If both r and s are non-zero, we modify the parameters by subtracting one from

both r and s while adding one to both b and a. Notice that these changes leave both
sides of (A.1) unchanged. Therefore we may assume without loss of generality that
s=0.
We may then rewrite the desired inequality (A.1) as

(b+ qy)!(b+ qz)!(a+ qy)!(a+ qz)!

((b+ qy + 1) : : : (b+ qy + r)(a+ qy + 1) : : : (a+ qy + r)

+ (b+ qz + 1) : : : (b+ qz + r)(a+ qz + 1) : : : (a+ qz + r))

6)n(b+ qy + qz)!b!(a+ qy + qz)!a!((b+ qy + qz + 1) : : :

(b+ qy + qz + r)(a+ qy + qz + 1) : : : (a+ qy + qz + r)

+ (b+ 1) : : : (b+ r)(a+ 1) : : : (a+ r)):

From Claim 1, we know that

(b+ qy)!(b+ qz)!(a+ qy)!(a+ qz)!
(b+ qy + qz)!b!(a+ qy + qz)!a!

6)n−r6)n;

so it suTces to check that

(b+ qy + 1) : : : (b+ qy + r)(a+ qy + 1) : : : (a+ qy + r)

+ (b+ qz + 1) : : : (b+ qz + r)(a+ qz + 1) : : : (a+ qz + r)

6 (b+ qy + qz + 1) : : : (b+ qy + qz + r)

(a+ qy + qz + 1) : : : (a+ qy + qz + r)

+ (b+ 1) : : : (b+ r)(a+ 1) : : : (a+ r):

We have equality here if qz =0, and it is evident that the derivative of the left-hand
side with respect to qz is uniformly at most that of the right-hand side. Therefore, the
inequality holds for all positive qz.
This completes the proof of Lemma 4.1.
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