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a b s t r a c t

Fix integers n and kwith n ≥ k ≥ 3. Duffus and Sands proved that if P is a finite poset and
n ≤ |C | ≤ n+ (n−k)/(k−2) for everymaximal chain in P , then P must contain k pairwise
disjoint maximal antichains. They also constructed a family of examples to show that these
inequalities are tight. These examples are two-dimensional which suggests that the dual
statement may also hold. In this paper, we show that this is correct. Specifically, we show
that if P is a finite poset and n ≤ |A| ≤ n+(n−k)/(k−2) for everymaximal antichain in P ,
then P has k pairwise disjoint maximal chains. Our argument actually proves a somewhat
stronger result, and we are able to show that an analogous result holds for antichains.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let k be an integer with k ≥ 2. In [1], Duffus and Sands investigated conditions that force a finite poset to have k-pairwise
disjointmaximal antichains. Theynoted that the case k = 2 is easy to solve, since in order to have 2pairwise disjointmaximal
antichains, it is necessary and sufficient that P not contain a point which is incomparable with all other points, i.e., P cannot
have a trivial maximal chain consisting of a single point.
But the situation when k ≥ 3 is more complicated, as reflected in the following intriguing result [1].

Theorem 1.1 (Duffus and Sands). Let n and k be integers with n ≥ k ≥ 3, and let P be a finite poset. If n ≤ |C | ≤ n +
(n− k)/(k− 2), for every maximal chain C in P, then P has k pairwise disjoint maximal antichains.

For each pair n and k with n ≥ k ≥ 3, Duffus and Sands also constructed a poset P(n, k) satisfying the following
properties:
(1) If C is a maximal chain in P(n, k), then n ≤ |C | ≤ n+ 1+ b(n− k)/(k− 2)c.
(2) P(n, k) does not have k pairwise disjoint maximal antichains.

These examples show that the inequality in Theorem 1.1 is best possible.
Duffus and Sands also initiated an investigation of the dual problem: conditions that force a poset to have k pairwise

disjoint maximal chains. When k = 2, they proved that a poset P has 2 pairwise disjoint chains if and only if it does not
contain a pointwhich is comparablewith all other points, i.e., P cannot have a trivialmaximal antichain consisting of a single
point.
They also noted that for each pair n and kwith n ≥ k ≥ 3, the poset P(n, k) has dimension 2. As a consequence, there is

a complementary poset Q (n, k) such that:
(1) If A is a maximal antichain in Q (n, k), then n ≤ |A| ≤ n+ 1+ b(n− k)/(k− 2)c.
(2) Q (n, k) does not have k pairwise disjoint maximal chains.
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Accordingly, it is natural to ask whether the dual form of the Duffus/Sands theorem holds, and the principal goal of this
paper will be to provide an affirmative answer by proving the following theorem.

Theorem 1.2. Let n and k be integers with n ≥ k ≥ 3, and let P be a finite poset. If n ≤ |A| ≤ n + (n − k)/(k − 2) for every
maximal antichain A in P, then P has k pairwise disjoint maximal chains.

As the reader will note, the argument we present for Theorem 1.2 is completely different from the argument given by
Duffus and Sands for Theorem 1.1. In fact, we will actually prove a more technical and somewhat stronger result and derive
our principal theorem as a corollary. In Section 4, wewill then show how a dual version of our technical result can be proved
for families of pairwise disjoint maximal antichains. As a consequence, we provide here an alternative proof of their main
theorem.
Although the results of this paper are very much in the spirit of Dilworth’s theorem and its dual form, as well as the

classic theorems of Greene [2] and Greene and Kleitman [3], we have not been able to establish any direct connection.

2. Cutsets and support structures

Let P be a finite poset. In discussions concerning families of pairwise disjointmaximal chains in P , we find it useful to apply
well-known concepts and techniques from network flows. In particular, we will employ the following basic proposition.

Proposition 2.1. The maximum number of pairwise disjoint maximal chains in P equals the minimum cardinality of a set
intersecting all maximal chains in P.

In view of Proposition 2.1, the following notation and terminology becomes natural. We will say that a chain C in a finite
poset P is saturated if either |C | = 1 or if |C | = r > 1 and C = {x1 < x2 < · · · < xr}, then xi is covered by xi+1 for each
i = 1, 2, . . . , r − 1.
A saturated chain in P whose least element is a minimal element of P will be called an initial chain. Dually, a saturated

chain whose greatest element is a maximal element of P will be called a terminal chain. Amaximal chain is always saturated
and is both an initial chain and a terminal chain. Trivially, for every point u in P , there is an initial chain whose greatest
element is u, and there is a terminal chain whose least element is u. The union of these two chains is a maximal chain
containing u.
Note also that whenever u < v in P , there is always a saturated chain C with u the least element of C and v the greatest

element of C . We say such a chain is a linking chain for u and v.
Let P be a finite poset and letW be a subset of P that intersects all maximal chains in P . We will refer toW as a cutset in

P . Next, we will develop some additional structural information concerning cutsets.
First, recall that the height of an element x in a finite poset P , denoted hP(x), is the largest integer t for which there exists

a chain of t elements in P with x the greatest element of this chain. Also, the height of the poset P is just the cardinality of a
maximum chain in P .
Now let s be a positive integer, and letW be an s-element cutset in P . Then let r be the height of the subposetW , and let

W = W1 ∪W2 ∪ · · · ∪Wr be the partition ofW determined by settingWi = {w ∈ W : hW (w) = i}, for each i = 1, 2, . . . , r .
Then for each i = 1, 2, . . . , r , let Ai be themaximal elements of the set {x ∈ P : x 6> w, for allw ∈ Wi}. It is obvious that Ai is
a maximal antichain in P and thatWi ⊆ Ai. Paralleling the discussion in [1], we refer to the maximal antichains in the family
{Ai : 1 ≤ i ≤ r} as flat antichains. Note that Ai and Aj need not be disjoint when i 6= j. However, the following important
property does hold.
Claim 1. If 1 ≤ i < j ≤ r, u ∈ Ai and v ∈ Aj, then u 6> v in P .

Proof. Suppose to the contrary that u > v in P . Since v is a maximal element of the set {x ∈ P : x 6> w}, for allw ∈ Wj, then
there exists some element w ∈ Wj with u > w in P . Since i < j, there is then some element w′ ∈ Wi with w > w′ in P . By
transitivity, this implies that u > w′ in P with both u andw′ belonging to the antichain Ai. The contradiction completes the
proof of the claim. �

Let u be an element of P . We say u is reachable if there is an initial chain C having u as its greatest element so that
C ∩W = ∅. Evidently, no point ofW is reachable. Also, all minimal elements of P that do not belong toW are reachable. On
the other hand, no maximal element of P is reachable, as this would imply that there is a maximal chain in P that does not
intersectW .
For each i = 1, 2, . . . , r , let Ri denote the set of reachable points in the antichain Ai, and let Ni = Ai −Wi − Ri. Elements

of Ni are not reachable.
Claim 2. N1 = Rr = ∅.

Proof. Suppose first that N1 6= ∅, and let u ∈ N1. We show that u is reachable. As noted previously, this statement holds
trivially if u is a minimal element of P , so we may assume u is not a minimal element. Then let C an initial chain in P having
u as its greatest element. We show that C ∩W = ∅ and thus that u is reachable. Suppose to the contrary that w ∈ C ∩W .
Since u ∈ A1 and w < u, we know that w 6∈ A1. Thus, w ∈ Wj for some j with 1 < j ≤ r , which then contradicts Claim 1.
We conclude that N1 = ∅.
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Now suppose that Rr 6= ∅, and let u ∈ Rr . Choose an initial chain C whose greatest element is u so that C ∩W = ∅. Then
let D be any terminal chain with u the least element of D. Just as before, we conclude that D ∩W = ∅, which would imply
that C ∪ D is a maximal chain in P that does not intersectW . The contradiction shows Rr = ∅. �

Claim 3. For each i = 1, 2, . . . , r − 1, Ri and Ni+1 are disjoint sets and Ri ∪ Ni+1 is an antichain in P .
Proof. The two sets are evidently disjoint, since points in Ri are reachable, while points in Ni+1 are not. We now show that
Ri ∪ Ni+1 is an antichain in P . Suppose to the contrary that it is not. Then it is clear that there must exist elements u ∈ Ri
and v ∈ Ni+1 that are comparable in P . By Claim 1, this requires u < v in P . Let C be an initial chain having u as its greatest
element with C ∩W = ∅, and let D be a saturated chain linking u and v. Then C ′ = C ∪ D is an initial chain in P with v as
its greatest element. If C ′ ∩W = ∅, then v is reachable. The contradiction shows that there must exist some w ∈ C ′ ∩W .
Clearly this implies that u < w < v in P . However, the fact that u ∈ Ai implies (using Claim 1) that w cannot belong to
W1 ∪W2 ∪ · · · ∪Wi. On the other hand, the fact that v ∈ Ai+1 implies thatw cannot belong toWi+1 ∪Wi+2 ∪ · · · ∪Wr . The
contradiction completes the proof that Ri ∪ Ni+1 is an antichain in P . �

Again, paralleling the discussion in [1], we refer to the antichains in the family S = {Ri ∪Ni+1 : 1 ≤ i ≤ r − 1} as slanted
antichains. Note that slanted antichains need not be maximal. Also, we refer to the family {Ai = Wi ∪ Ri ∪Ni : 1 ≤ i ≤ r} as
the support structure for the cutsetW in P . Strictly speaking, the support structure of a cutsetW is determined entirely by
W and P , but we find it useful to carry along the additional information given by the family of flat antichains, and the set of
reachable elements.

3. Proof of the principal theorem

We now have the tools necessary to provide Theorem 1.2. As noted previously, we elect to prove a more technical and
somewhat stronger result and derive Theorem 1.2 as a corollary. First, recall that the width of a poset P is the maximum
cardinality of an antichain in P .

Theorem 3.1. Let P be a poset, let s denote the maximum number of pairwise disjoint maximal chains in P, and let W be an
s-element cutset in P. If the height of W is r, the width of P is t and n = min{|Ai| : 1 ≤ i ≤ r}, then the following inequality
holds:

rn ≤ s+ t(r − 1). (1)

Proof. Let {Ai = Wi ∪ Ri ∪ Ni : 1 ≤ i ≤ r} be the support structure ofW . Since |N1| = |Rr | = 0, it is immediate that
r∑
i=1

|Ai| = s+
r∑
i=1

|Ri| + |Ni| = s+
r−1∑
i=1

|Ri ∪ Ni+1|.

Since |Ai| ≥ n for each i = 1, 2, . . . , r and |Ri ∪ Ni+1| ≤ t , for each i = 1, 2, . . . , r − 1, inequality 1 follows. �

To see how our main theorem now follows easily as a corollary to Theorem 3.1, let n and k be integers with n ≥ k ≥ 3.
Then let P be a finite poset in which every maximal antichain has at least n elements, and suppose that the width t of P is at
most n+ (n− k)/(k− 2). If P does not have k pairwise disjoint chains, then there is some positive integer swith s < k for
which there is an s-element cutsetW in P . Let r denote the height ofW and let t denote the width of P . From Theorem 3.1,
we know that rn ≤ s+ t(r − 1), and this inequality may be rewritten as t ≥ n+ (n− s)/(r − 1). Since r ≤ s and s ≤ k− 1,
this implies

t ≥ n+
n− s
r − 1

≥ n+
n− s
s− 1

≥ n+
n− k+ 1
k− 2

.

This is a contradiction, since t ≤ n+ (n− k)/(k− 2), and this remark completes the proof.

4. Some notes on the original problem

It is worth noting that the approach we have followed in proving Theorems 3.1 and 1.2 cannot be applied (at least
not without modification) to the original problem studied by Duffus and Sands. The reason is that the dual version of
Proposition 2.1 is not valid. Specifically, it is not true that the maximum number of pairwise disjoint antichains in a finite
poset P equals the minimum cardinality of a set intersecting all maximal antichains in P .

Lemma 4.1. For every n ≥ 2, there exists a poset Pn in which the maximum number of pairwise disjoint antichains is 2, but the
minimum cardinality of a set of points intersecting all maximal antichains is 2n.

Proof. Consider a finite projective plane Fn of order n. Let X denote the set of points in Fn and let Y denote the set of lines in
Fn. Then |X | = |Y | = n2 + n + 1; each line contains n + 1 points; each point is on n + 1 lines; each pair of distinct points
determines a unique line; and each pair of distinct lines intersect in a unique point.
We construct a poset Pn of height 2 with X as the set of minimal elements and Y as the set of maximal elements.

Furthermore, if x ∈ X and y ∈ Y , we set x < y in Pn if and only if point x is not on line y in Fn.
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It follows immediately that in addition to the set ofminimal elements and the set ofmaximal elements, Pn has 2(n2+n+1)
other maximal antichains. They come in two different types, with Type 1 corresponding to points in Fn and Type 2 corre-
sponding to lines in Fn.

Type 1: For each x ∈ X , the set Ax = {x} ∪ {y ∈ Y : x 6< y} is a maximal antichain.
Type 2: For each y ∈ Y , the set By = {y} ∪ {x ∈ X : x 6< y} is a maximal antichain. �

Claim 1. The maximum number of pairwise disjoint maximal antichains in Pn is two.

Proof. It is easy to see that the poset Pn has 2 pairwise disjointmaximal antichains, for example, the set ofminimal elements
and the set of maximal elements. We now show that Pn does not have 3 pairwise disjoint maximal antichains.
Suppose to the contrary that F = {I1, I2, I3} is a family of 3 pairwise disjoint maximal antichains in Pn. Then at most one

antichain in F is a Type 1 antichain, since if x and x′ are distinct points, then the line ywhich they determines belongs to Ax
and to Ax′ . Dually, at most one member of F is a Type 2 antichain.
So one of the members of F is either the set of minimal elements or the set of maximal elements. But in this case, no

member ofF can be either a Type 1 or a Type 2 antichain, since each of these contains both aminimal element and amaximal
element. The contradiction completes the proof of the claim. �

Claim 2. The minimum cardinality of a set intersecting all maximal antichains in Pn is 2n.

Proof. LetW be a set which intersects all maximal antichains in Pn. There are 2(n2+ n+ 1) antichains of Types 1 and 2, but
any element of Pn belongs to exactly n+ 2 maximal antichains from these two types. This implies that

|W | ≥
⌈
2(n2 + n+ 1)
n+ 2

⌉
≥ 2n− 1 ≥ 3.

Furthermore, if x and x′ are distinct points, then there is one maximal antichain of Type 2 to which both belong. Also, if y
and y′ are distinct lines, then there is one maximal antichain of Type 1 to which both belong. An easy calculation shows that
ifW consists entirely of minimal elements or entirely maximal elements, then |W | ≥ 2n+ 1. But ifW contains at least one
maximal element and at least one minimal element, then |W | ≥ 2n.
We now show that there is a setW with |W | = 2n so thatW intersects every maximal antichain in Pn. Choose a point x0

and a line y0 which passes through x0. ThenW = {x ∈ X : x 6< y0, x 6= x0} ∪ {y ∈ Y : x0 6< y, y 6= y0} contains 2n elements.
We now show that if I is a maximal antichain in Pn, thenW intersects I . This is certainly true if I is either the set of maximal
elements or the set of minimal elements. If I = Ax is a Type 1 antichain, and x is not on the line y0 in Fn, then x 6= x0, and if
y is the line determined by x and x0, then y 6= y0. It follows that y belongs to the antichain I as well as toW . On the other
hand, if x is on the line determined by y0 and x 6= x0, then x belongs to I and toW . Furthermore, if x = x0, then y ∈ W ∩ I ,
for every line y passing through x0, with y 6= y0.
A dual argument shows that W intersects every Type 2 antichain, and with this observation, the proof of the claim is

complete. �

In spite of the apparent difficulties presented by Lemma 4.1, there is a natural framework within which we can derive a
dual version of Theorem 3.1 and then proceed to derive the Duffus/Sands result as a corollary.
Let P be a finite poset and let t denote the height of P . Then, for each i = 1, 2, . . . , t , let Li = max{x : hP(x) ≤ i}. We refer

to {Li : 1 ≤ i ≤ t} as the family of level antichains in P . It is straightforward to verify that each level antichain is a maximal
antichain. Furthermore, we have the following important property:

Proposition 4.2. If 1 ≤ i < j ≤ r, u ∈ Li and v ∈ Lj, then u 6> v in P.

We then have the following basic result.

Theorem 4.3. The maximum number of pairwise disjoint level antichains is equal to the minimum number of points in a set
intersecting all of them.

Proof. We show that there is a partition {1, 2, . . . , t} = B1 ∪ B2 ∪ · · · ∪ Bs, so that for each p = 1, 2, . . . , s:

(1) Bp = [bp, cp] is a block of consecutive integers with bp = 1+ cp−1 when p > 1.
(2) There is a point xp common to all antichains in {Li : i ∈ Bp}.
(3) If cp < i ≤ t , then Li ∩ Lbp = ∅.

Once this partition has been constructed, we will then have a family {Lbp : 1 ≤ p ≤ s} of s pairwise disjoint maximal
antichains and an s-element setW = {xp : 1 ≤ p ≤ s}which intersects all level antichains.
The construction proceeds inductively Set c0 = 0. Suppose for some p ≥ 1, we have a value of cp−1 and if p ≥ 2, the

properties listed above hold for the blocks B1, B2, . . . , Bp−1. If cp−1 < t , set bp = 1+ cp−1 and let cp be the largest integer for
which cp ≤ t and Lbp ∩ Lcp 6= ∅. Then choose xp as an element from Lbp ∩ Lcp . It follows from Proposition 4.2 that xp belongs
to every antichain in {Li : i ∈ Bp}. Furthermore, if cp < i ≤ t , then Li ∩ Lbp = ∅. �



Author's personal copy

2894 D.M. Howard, W.T. Trotter / Discrete Mathematics 310 (2010) 2890–2894

Now we can state and prove a dual version for Theorem 3.1

Theorem 4.4. Let P be a poset, let s denote the maximum number of pairwise disjoint antichains in the family of level antichains
in P, and let W be an s-element set intersecting all level antichains in P. Let r be the width of W and let C1, C2, . . . , Cr bemaximal
chains in P that cover W. If n = min{|Ci| : 1 ≤ i ≤ r}, then the following inequality holds:

rn ≤ s+ t(r − 1). (2)

Proof. Let x ∈ W and let B = [b, c] be the set of consecutive integers from {1, 2, . . . , t} so that x ∈ Lj if and only if j ∈ B.
It follows that hP(x) = b. Furthermore, if x ∈ Ci, then there are no points in Ci that have height j where b < j ≤ c. Since
|Ci| ≥ n for each i = 1, 2, . . . , r and we have eliminated points at all heights from {1, 2, . . . , t}, except for the heights of
elements ofW , we conclude that rn ≤ rt − t + s, which is equivalent to inequality 2. �

Note that Theorem 1.1 again follows immediately from this more technical result.
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