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Abstract. For a positive integer k, let k + k denote the poset consisting of

two disjoint k-element chains, with all points of one chain incomparable with
all points of the other. Bosek, Krawczyk and Szczypka showed that for each

k ≥ 1, there exists a constant ck so that First Fit will use at most ckw
2 chains

in partitioning a poset P of width at most w, provided the poset excludes k+k
as a subposet. This result played a key role in the recent proof by Bosek and

Krawczyk that O(w16 logw) chains are sufficient to partition on-line a poset

of width w into chains. This result was the first improvement in Kierstead’s
exponential bound: (5w − 1)/4 in nearly 30 years. Subsequently, Joret and

Milans improved the Bosek-Krawczyk-Szczypka bound for the performance

of First Fit to 8(k − 1)2w, which in turn yields the modest improvement to
O(w14 logw) for the general on-line chain partitioning result. In this paper, we

show that this class of posets admits a notion of on-line dimension. Specifically,
we show that when k and w are positive integers, there exists an integer t =

t(k,w) and an on-line algorithm that will construct an on-line realizer of size

t for any poset P having width at most w, provided that the poset excludes
k + k as a subposet.

1. Introduction

Recall that a family R = {L1, L2, . . . , Lt} of linear extensions of a partially or-
dered set (poset) P is called a realizer of P if x < y in P if and only if x < y
in Li for each i = 1, 2, . . . , t. The dimension of P is then defined as the least t
for which P has a realizer of cardinality t. We refer the reader to Trotter’s mono-
graph [20] and survey article [21] for extensive background material on dimension
and combinatorial problems for finite posets.

When P and Q are posets and there is no subposet of P that is isomorphic to
Q, we will simply say that P excludes Q. In this paper, we will consider the on-line
version of dimension introduced in [12], and we will consider classes of posets that
exclude two long incomparable chains. To be more precise, for a positive integer
k, let k + k denote the poset consisting of two disjoint k-element chains, with all
points of one chain incomparable with all points of the other. Then our principal
result will be the following theorem.

Theorem 1.1. Let k and w be positive integers. Then there exists an integer
t = t(k,w) and an on-line algorithm that will construct an on-line realizer of size t
for any poset P having width at most w and excluding k + k.

The remainder of this paper is organized as follows. In the next section, we
provide a brief sketch of results that motivate our line of research. In Section 2,
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we develop some key properties of posets that exclude k + k, and in Section 4, we
provide the proof of our principal theorem. Finally, in Section 5, we highlight some
open problems.

2. Background Material

As is customary in discussions of on-line algorithms, we consider the problem
as a two-person game: OL-Dim(P, n, t) where P is a class of posets and n and t
are positive integers. One person, called a Builder, constructs a poset P from P
one point at a time, while the second player, called an Assigner, builds a realizer
of this poset in an on-line manner. If the ground set is {x1, x2, . . . , xn}, then at
round i, Builder will have described the subposet of Pi induced by the elements
{x1, x2, . . . , xi} and Assigner will have determined a familyRi = {Li1, Li2, . . . , Lit} of
linear extensions forming a realizer of Pi. Both constructions proceed in an on-line
manner, i.e., when i > 1, Builder need only list the elements of {x1, x2, . . . , xi−1}
that are, respectively, less than xi, greater than xi and incomparable with xi in Pi.
Subsequently, for each j = 1, 2, . . . , t, Assigner reveals how each Li−1

j from Ri−1

will be extended to form a linear extension Lij , while maintaining the property that
Ri must be a realizer of Pi.

The game ends, with Builder declared the winner, if at some round i with 2 ≤
i ≤ n, Builder presents the required information for Pi but Assigner cannot extend
the extensions fromRi−1 to maintainRi as a realizer of Pi. Assigner wins if Builder
does not, i.e., after all n rounds are completed, Assigner has a realizer Rn of the
final poset P = Pn.

We say the on-line dimension of a class P of posets is infinite if for every t, there
is some n so that Builder has a winning strategy for the game OL-Dim(P, n, t).
Here, we are particularly interested in classes C for which the on-line dimension is
finite, i.e., there is some t for which Assigner has a winning strategy for the game
OL-Dim(P, n, t) for all n. The least such t is called the on-line dimension of the
class, and when we are unable to settle the exact value, we would at least like to
provide reasonable upper bounds.

2.1. On-Line Chain Partitions. Any discussion of on-line dimension can’t go
very far without mentioning the companion problem of constructing an on-line
chain partition of a poset. Here we have a two person game OL-ChainPart(P, n, s)
where P is a class of posets and n and s are positive integers. In this game, Builder
constructs a poset one point at a time and Partitioner constructs a chain partition
in an on-line manner. At round i, with 1 ≤ i ≤ n, Builder describes the subposet
Pi induced by the elements of {x1, x2, . . . , xi}. Partitioner currently has a chain
partition Ci−1 = {Ci−1

1 , Ci−1
2 , . . . , Ci−1

s } (initialized by setting all chains in C0 to
be empty), and this partition is updated to Ci by choosing an appropriate j0 with
1 ≤ j0 ≤ s and setting Cij0 = {xi} ∪ Ci−1

j0
. Of course, for all j = 1, 2, . . . , s, with

j 6= j0, Cij = Ci−1
j .

We say that class P can be partitioned on-line into s chains when Partioner has
a winning strategy for the game OL-ChainPart(P, n, s), for every n.

Historically, the following theorem of Kierstead [10] played a very important role
in motivating research on on-line problems for posets.

Theorem 2.1. The class of all posets of width at most w can be partitioned on-line
into (5w − 1)/4 chains.
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From below, an argument due to Szemerédi shows that any on-line algorithm can
be forced to use at least w(w + 1)/2 chains to partition on-line posets of width w
into chains. In [1], this argument is presented, together with an improved lower
bound of (1 − o(1))w2. The upper bound has proved equally resilient, but quite
recently, Bosek and Krawczyk [3] made a significant advancement by proving the
first subexponential bound for on-line chain partitioning.

Theorem 2.2. The class of all posets of width at most w can be partitioned on-line
into w16 logw chains.

2.2. Excluding Two Incomparable Chains. Posets that exclude 2 + 2 as sub-
posets are just the interval orders [6], and for this class, we have the following
result [15].

Theorem 2.3. The class of all interval orders of width at most w can be partitioned
on-line into 3w − 2 chains. Furthermore, this is best possible.

In fact, it is shown in [15] that order is not essential. It is enough to know
whether elements are comparable or not, i.e., the result can be stated in terms of
coloring interval graphs where only adjacencies are provided by the Builder and not
an interval representation.

Theorem 2.4. The class of all interval graphs of maximum clique size at most k
can be colored on-line using 3k − 2 colors. Furthermore, this is best possible.

Moreover, it is known that First Fit performs reasonably well in coloring interval
graphs. In fact, in a series of papers [22], [11], [13], [17], [2] and [16] and [8],
incremental improvements have been made in analyzing the performance of First
Fit in the coloring of interval graphs with maximum clique size at most k, with the
current upper bound being 8k − 4.

From below, Chrobak and Ślusarek [5] have given a computer based proof to
show that when k is sufficiently large, First Fit can be forced to use more than 4.5k
colors on an interval graph with maximum clique size k. Currently, the best lower
bound is given in [14], where it is shown that for every ε > 0, there is a k0 so that
First Fit can be forced to use (5 − ε)k colors on an interval graph with maximum
clique size k, provided k ≥ k0.

The fact that interval orders exclude 2 + 2 plays a pivotal role in the following
result due to Hopkins [7].

Theorem 2.5. The on-line dimension of the class of interval orders of width at
most w is at most 4w − 4.

On the other hand, First Fit does not perform well when used as an algorithm
for chain partitioning on general posets. In [10], it is shown that on a width 2
poset having O(n2) points, First Fit can be forced to use n chains. Nevertheless,
Bosek, Krawczyk and Szczypka [4] showed that First Fit works surprisingly well in
partitioning posets into chains provided they exclude two long incomparable chains.

Theorem 2.6. For each k ≥ 3, there exists a constant ck so that the class of posets
having width at most w and excluding k + k will be partitioned into ckw

2 chains
using First Fit.
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We should note that this last result played a key role in Bosek and Krawczyk’s
proof of Theorem 2.2. However, it was noted in [4] that the inequality in Theo-
rem 2.6 might not be tight, and quite recently, this issue has been settled by Joret
and Milans [9] with the following strengthening.

Theorem 2.7. If r, s ≥ 2, then First Fit will use at most 8(r − 1)(s− 1)w chains
in partitioning a poset into chains provided the width of the poset is at most w and
it excludes r + s.

We note that the elegant argument given by Joret and Milans is an extension
of the column labeling method introduced by Pemmaraju, Raman and Varadara-
jan [17]. Sharpening this labeling tool was a central component in the approaches
taken by Brightwell, Kierstead and Trotter in [2] and by Narayanaswary and Babu [16].

When the improved bound from Theorem 2.7 is substituted into the argument
for Theorem 2.2, the new upperbound for the general on-line chain partitioning
problem becomes O(w14 logw).

We encourage the reader to consult the recent survey paper [1] for an up-to-date
discussion of results on on-line chain partitioning.

2.3. Crowns and On-Line Dimension. Here is a second instance where two
long incomparable chains play a key role.

For integers n and k with n ≥ 3 and k ≥ 0, let Skn denote the poset of height 2
having n + k maximal elements a1, a2, a3, . . . , an+k and n + k minimal elements
b1, b2, b3, . . . , bn+k. The order relation is defined (cyclically) by setting bi to be
incomparable with ai, ai+1, ai+2, . . . , ai+k and under the remaining n− 1 maximal
elements. This family of posets are called generalized crowns, and Trotter [19] gave
the following formula for their dimension.

Theorem 2.8. For n ≥ 3 and k ≥ 0, dim(Skn) = d2(n+ k)/(k + 2)e.

When k = 0, the poset S0
n has 2n points and dimension n. It is also called the

standard example of an n-dimensional poset, and in most settings, it is just denoted
as Sn. The standard example Sn is irreducible, i.e., the removal of any point lowers
the dimension of the remaining subposet to n− 1.

When n = 3, the posets in the family F = {Sk3 : k ≥ 0} have dimension 3 and
they are also irreducible. Historically, the posets in F were studied before this more
general definition was made, and in early papers, they were called crowns.

In [12], the following results are proved.

Theorem 2.9. The on-line dimension of the class of posets having width at most 2
is at most 5.

Theorem 2.10. The on-line dimension of the class of posets having width at most 3
is infinite.

The proof of Theorem 2.10 provides a strategy for Builder to win the OL-Dim(P, n, t)
game where P is the class of posets of width at most 3, provided n is sufficiently
large in comparison to t. Builder starts by constructing two long incomparable
chains, which the Assigner can force to be at least of size t− 2. Builder then wins
the game by appropriately adding elements that form S0

3 = S3, which is both a
crown and a standard example.

Subsequently, Kierstead, McNulty and Trotter proved the following result.
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Theorem 2.11. The on-line dimension of the class of width at most w and ex-
cluding all crowns in F = {Sk3 : k ≥ 0} has on-line dimension at most s!, provided
the posets in the class can be partitioned on-line into s chains.

From Theorem 2.10, we know that one must exclude the smallest crown S3 in
order to have a chance for finite on-line dimension, but it is still not known whether
it is necessary to exclude all crowns when the width is allowed to be larger than 3.
The proof given in [12] depends heavily on this assumption, but it may actually be
the case that it is enough to exclude S3.

Regardless, in view of Theorem 2.6 and of the proof of Theorem 2.10 the following
question emerges naturally. Let k and w be positive integers with k ≥ 3 and w ≥ 2.
Does the class of posets of width at most w and excluding k + k have finite on-
line dimension? The principal result of this paper will be the following affirmative
answer.

Theorem 2.12. Fix positive integers k and w. If the class P(w, k) of posets having
width at most w and excluding k + k can be partitioned on-line into s chains, then
the online dimension of P(w, k) is at most m!, where m = s(6k − 11).

3. Preliminaries

Here is an elementary consequence of the property that a poset excludes k + k.

Proposition 3.1. Let C1 = {x1 < x2 < · · · < xk} and C2 = {y1 < y2 < · · · < yk}
be disjoint k-element chains in a poset P excluding k + k. Then either x1 < yk in
P or y1 < xk in P .

In work to follow, we need a somewhat stronger version of this basic result, and
we need to allow the chains to intersect. For this purpose, we make the following
definition: Let P be a poset, and let N0 denote the set of non-negative integers.
Define a function ρ : P × P −→ N0 by setting (a) ρ(x, y) = 0 when x 6< y; and
(b) when x < y in P , ρ(x, y) is the largest positive integer m for which there is
a chain x = z1 < z2 < · · · < zm < y in P . For emphasis, we state the following
elementary property satisfied by this function.

Proposition 3.2. If x ≤ y ≤ z in P , then ρ(x, z) ≥ ρ(x, y) + ρ(y, z).

The following elementary lemma will be key to our proof of Theorem 2.12.

Lemma 3.3. Let k ≥ 2, let x1, x2, y1, y2 be points in a poset P that excludes k+k.
If ρ(x1, x2) ≥ k − 1 and ρ(y1, y2) ≥ k − 1, then

ρ(x1, y2) + ρ(y1, x2) ≥ ρ(x1, x2) + ρ(y1, y2)− 2k + 3

Proof. We argue by induction on the non-negative integer q = ρ(x1, x2)+ρ(y1, y2)−
2k + 2. First consider the base case q = 0, where we need only show that either
x1 < y2 or y1 < xm in P . Let n = ρ(x1, x2) and m = ρ(y1, y2). Then choose chains
C1 = x1 = u1 < u2 < · · · < un < x2 and C2 = y1 = v1 < v2 < · · · < vm < y2.
Without loss of generality, we may assume that n ≥ m. If C1∩C2 6= ∅, then x1 < y2
and y1 < x2, so we may assume that C1 ∩ C2 = ∅. Now the conclusion that either
x1 < y2 or y1 < x2 follows from the fact that P excludes k + k.

Now suppose that q > 0 and that the conclusion of the lemma holds for smaller
values of q. We may assume without loss of generality that n ≥ m. Since P
does not contain k + k, we conclude that either x1 < y2 or y1 < x2. If x1 < y2,
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we apply the inductive hypothesis to the elements u2, x2, y1, y2 and conclude that
ρ(u2, y2) + ρ(y1, x2) ≥ q. Since ρ(x1, y2) ≥ ρ(u2, y2) + 1, we conclude that

ρ(x1, y2) + ρ(y1, x2) ≥ q + 1 = ρ(x1, x2) + ρ(y1, y2)− 2k + 3.

If on the other hand, y1 < x2, we apply the inductive hypothesis to x1, un, y1, y2.
Now we observe that ρ(x1, y2) + ρ(y1, un) ≥ q, and from this the desired inequality
again follows immediately. �

4. Proof of the Main Theorem

Readers who are familiar with the proof techniques in [12] will recognize that
we are adapting for our purposes the following concepts that first appear in that
paper: (a) an auxiliary partial order on the chains in an on-line chain partition;
(b) the construction of an on-line realizer using permutations; and (c) the notion of
a blocking chain. However, there are some key moments where the proof we present
will diverge from the approach of [12].

For convenience, we write x‖y when x and y are distinct incomparable points of
P .

Our main theorem is trivial if either w = 1 or k = 1, so we may assume w ≥ 2
and k ≥ 2. The case w = 2 is handled by Theorem 2.9, while the case k = 2 is
handled by Theorem 2.5. So for the remainder of the proof, we fix integers w ≥ 3
and k ≥ 3, and we let P = P(w, k) be the class of posets of width at most w and
excluding k + k.

4.1. Modifying the Chain Partition. We suppose that the poset P is parti-
tioned on-line into s chains, and denote these chains as C1, C2, . . . , Cs. It is not
important how this partition is obtained, so for example, it could be determined
using the algorithm of Bosek and Krawczyk from Theorem 2.2, but it could even
be given to us by a generous Builder. Regardless, we elect to modify the parti-
tion using chains of the form: Ci,j where i and j are integers with 1 ≤ i ≤ s and
1 ≤ j ≤ 6k−11. Accordingly, there will be s(6k−11) chains in the revised scheme.
Assignment to these new chains is determined by the following simple rule. When
a point x enters, if the old algorithm would assign x to chain Ci, the new algorithm
assigns it to chain Ci,j , using First Fit to break ties on the second coordinate so
that the following key property is maintained:

The Separation Principle. If u and v are distinct points in a chain Ci,j and
u < v in P , then ρ(u, v) ≥ 3k − 5.

It is obvious that the Separation Principle can be maintained as long as we have
6k − 11 choices for the second coordinate. This results from the fact that we need
only be able to break ties with (at most) 3k− 6 elements from Ci that are above x
and (at most) 3k − 6 elements from Ci that are below x.

4.2. The Winning Strategy for Assigner. Set m = s(6k− 11) and t = m!. We
show that Assigner can build an on-line realizer consisting of t linear extensions.
Here is the winning strategy. First, relabel the m = s(6k−11) chains in the on-line
chain partition satisfying the Separation Principle as D1, D2, . . . , Dm. Also, when
x is a point in P , we let φ(x) denote the unique subscript α ∈ {1, 2, . . . ,m} so that
x ∈ Dα. The realizer R will contain a linear extension Lσ for every permutation σ
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of the integers in {1, 2, . . . ,m}, the set of subscript of the chains in our modified on-
line chain partition. Let σ = (α1, α2, . . . , αm) be such a permutation. We explain
how Assigner will build Lσ.

Suppose the new point x enters at round i and that during round i − 1, the
Assigner has constructed a linear extension Lσ of the poset determined by the
first i− 1 points of P . To update Lσ, we consider the set Vσ(x) consisting of (1) all
points v with v > x in P together with (2) all points v with x‖v in P , v > u in
Lσ for all u with x > u in P and φ(x) < φ(v). If Vσ(x) = ∅, place x at the very
top of Lσ. If Vσ(x) 6= ∅, let v0 be the least element of Vσ(x) in Lσ and insert x
immediately under v0.

The following elementary property is stated for emphasis.

Proposition 4.1. Let σ be a permutation of {1, 2, . . . ,m}. Then at every stage of
the game, if u is immediately under v in Lσ, then either (a) u < v in P or (b) u‖v
and φ(u) < φ(v) in σ.

The remainder of the proof consists of showing that this simple strategy produces
a win for Assigner. Let x and y be incomparable points in P . We show that there is
some Lσ for which x > y in Lσ. By symmetry, this is enough to show that Assigner
will maintain R as an on-line realizer. To accomplish this task, we freeze the poset
at the first moment in time that both x and y are present and argue about the
poset P that we have at that stage. Let φ(y) = a and φ(x) = b. We will restrict
our attention to those Lσ for which a is the first element in σ and b is the last. In
any such Lσ, when x enters, it will go as high as possible, and when y enters, it
will go as low as possible.

We consider points in the following subposets of P :

U = {u : u < y in P and u‖x} and V = {v : v‖y, v 6≤ x}.

For each u ∈ U , note that ρ(u, y) > 0. Also, if ρ(u, y) = q, and u = u1 < u2 <
· · · < uq < y is a chain, then u2, u3, . . . , uq all come from U .

Dually, for each v ∈ V , we let h(v) be the largest integer r for which there is
a chain v1 < v2 < v3 < · · · < vr = v with all elements in this chain coming from
V ∪ {x}. Since x and all elements of V are incomparable with y, we have the
following elementary observation.

Proposition 4.2. Let u ∈ U and v ∈ V . If ρ(u, y) ≥ k − 1 and h(v) ≥ k, then
u < v in P .

Let S = {1, 2, . . . ,m}\{a, b}, i.e., S is the set of all subscripts of chains, excepting
the chains containing x and y respectively. We will now determine an auxiliary
partial order Q on S. Subsequently we will show that we must have x > y in any
Lσ with a as its least element, b as its greatest element, and the m− 2 elements of
S ordered by any linear extension of Q.

Let SU = {α ∈ S : φ(u) = α for some u ∈ U}, and let SV = {α ∈ S : φ(v) = α for
some v ∈ V }. The set SU∪SV is then partitioned as SU∪SV = S1∪S2∪S3∪S4∪S5,
according to the following scheme:

(1) α ∈ S1 if α ∈ SU − SV .
(2) α ∈ S2 if (a) α ∈ SU ∩ SV and (b) there is some u in U with φ(u) = α and

ρ(u, y) < k − 1.
Note that if v ∈ V with φ(v) = α, then at least 2k − 3 elements of the
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longest chain connecting u and v are in V . Therfore h(v) ≥ 2k − 2 for any
such v.

(3) α ∈ S3 if (a) α ∈ SU ∩SV , (b) ρ(u, y) ≥ k−1 for any u ∈ U with φ(u) = α,
and (c) h(v) ≥ k for any v ∈ V with φ(v) = α.
Note that if α, β ∈ S3, then u < v in P for every u ∈ U and v ∈ V with
φ(u) = α and φ(v) = β.

(4) α ∈ S4 if (a) α ∈ SU ∩ SV , (b) there is some v ∈ V with φ(v) = α and
h(v) ≤ k − 1.
Note that we must have ρ(u, y) ≥ 2k − 3 for any u ∈ U with φ(u) = α.

(5) α ∈ S5 if α ∈ SV − SU .

Next, we define a binary relation Q on S by the following rules:

(1) Put (α, β) in Q if there are integers i, j with 1 ≤ i < j ≤ 5 so that α ∈ Si
and β ∈ Sj .

(2) Let i ∈ {2, 4} and let α, β ∈ Si. Put (α, β) in Q if there are elements u ∈ U ,
v ∈ V so that (a) φ(u) = α, (b) φ(v) = β, and (c) ρ(u, v) < k − 1.

Proposition 4.3. The binary relation satisfies the following properties and is there-
fore a partial order on S:

(1) Q is irreflexive, i.e., (α, α) 6∈ Q, for every α ∈ S.
(2) Q is asymmetric, i.e., if (α, β) ∈ Q, then (β, α) 6∈ Q.
(3) Q is transitive, i.e., if (α, β) ∈ Q and (β, γ) ∈ Q, then (α, γ) ∈ Q.

Proof. The first property follows directly from the definition of Q and the sparcity
of the chains. Clearly, to prove the second and third properties, it is enough to
show that they hold for the restriction of Q to Si, for i = 2 and i = 4; and a single
argument suffices for this purpose. Fix i ∈ {2, 4}, and let α, β, γ ∈ Si and suppose
that both (α, β) and (β, γ) belong to Q (note that we allow α = γ). Choose uα ∈ U
and vβ ∈ V that witness (α, β) ∈ Q. Also choose uβ ∈ U and vγ ∈ V that witness
(β, γ) ∈ Q. Then ρ(uα, vβ) ≤ k − 2 and ρ(uβ , vγ) ≤ k − 2. Since uβ < vβ in P ,
ρ(uβ , vβ) ≥ 3k− 5. If α = γ, then ρ(uα, vγ) ≥ 3k− 5; if α 6= γ and (α, γ) 6∈ Q, then
ρ(uα, vγ) ≥ k − 1. We conclude that

2(k − 2) ≥ ρ(uα, vβ) + ρ(uβ , vγ) ≥ (3k − 5) + (k − 1)− 2k + 3 = 2k − 3.

The contradiction completes the proof. �

Now that we have shown that Q is a partial order on S, we will write α < β
in Q rather than (α, β) ∈ Q. Next, let σ0 = (α1, α2, α3, . . . , αm−1, αm) be any
permutation of {1, 2, . . . ,m} so that α1 = 1 = φ(y), αm = m = φ(x), and α2 <
α3 < · · · < αm−1 is a linear extension of Q. We will now proceed to show that
x > y in Lσ0 .

We start with an easy but important lemma. The reader may note that the
conclusion of this lemma was precisely the motivation for our definition of the
auxiliary partial order Q.

Lemma 4.4. Let u ∈ U and v ∈ V . If u‖v in P , then φ(u) < φ(v) in Q.

Proof. Let u ∈ U and v ∈ V and set α = φ(u) and β = φ(v). We assume that u‖v
in P and show that α < β in Q. Choose integers i and j so that α ∈ Si and β ∈ Sj .
Note that j 6= 1 and i 6= 5. Furthermore, the conclusion of the lemma holds if i < j
so we may assume that i ≥ j.
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Suppose first that i = j. Since ρ(u, v) = 0, the conclusion of the lemma is
witnessed by u and v when i = j = 2 and when i = j = 4. However, ρ(u, v) = 0
implies that we cannot have i = j = 3 (see the comment made when S3 was first
defined). So we may assume that i 6= j, i.e., i > j. Then i is either 3 or 4 and j is
either 2 or 3. From the definitions of S2, S3 and S4, we conclude that ρ(u, y) ≥ k−1
and h(v) ≥ k. However, these statements imply that u < v in P . The contradiction
completes the proof. �

4.3. Blocking Chains. For the remainder of the proof, we assume that x < y in
Lσ0

and argue to a contradiction. We say that a sequence x = z0, z1, z2, . . . , zr = y
of points is a blocking chain when for each i = 0, 1, 2, . . . , r − 1, zi precedes zi+1

in Lσ0 , and either zi < zi+1 in P or zi‖zi+1 and φ(zi) < φ(zi+1) in σ0. Note
that the string of all elements in Lσ0 beginning with x and ending with y forms a
blocking chain. Now consider a blocking chain x = z0, z1, z2, . . . , zr with r as small
as possible.

Lemma 4.5. Let x = z0, z1, z2, . . . , zr = y be a blocking chain with r as small as
possible. Then the following statements hold:

(1) The integer r is odd and φ(zi) 6= φ(zj) whenever 0 ≤ i < j ≤ r.
(2) When i is even and 0 ≤ i < r, zi < zi+1 in P and φ(zi) > φ(zi+1) in σ0.
(3) When i is odd and 1 ≤ i < r, zi‖zi+1 and φ(zi) < φ(zi+1) in σ0.
(4) When 0 ≤ i < j ≤ r and j ≥ i+ 2, zi‖zj and φ(zi) > φ(zj) in σ0.

Proof. This proof is the same as in the argument given in [12]. First note that
x < z1 and zr−1 < y because φ(y) is first and φ(x) is last in σ0. Since we choose a
shortest blocking chain there is no i with zi−1 < zi < zi+1 nor zi−1‖zi‖zi+1. This
yields (2) and (3) and implies that r is odd. If φ(zi) = φ(zi+1) we can skip zi. If
i+1 < j and either φ(zi) = φ(zj) or φ(zi) < φ(zj) there is a shorter blocking chain.
This yields the remaining piece for (1) and (4). �

To complete the proof, we note that zr−1 ∈ U while zr−2 ∈ V . Since zr−1‖zr−2,
it follows from Lemma 4.4 that φ(zr−1) < φ(zr−2), which is a contradiction.

4.4. An Alternate Approach. As we are very much interested in extending the
results and techniques developed here in new directions, we comment briefly that
there is an alternative approach to proving our principal theorem. When P excludes
k + k, we may define a partial order PI so that:

(1) If x < y in PI , then x < y in P , i.e., P is an extension of PI .
(2) If ρ(x, y) ≥ (k − 1)(w − 1) in P , then x < y in PI .
(3) PI is an interval order.

The definition of PI can be made using the following rule: For each x ∈ P ,
associate with x the closed interval [dx, ux] where dx = |{y ∈ P : y < x in P}| and
ux = |P | − |{z ∈ P : z > x in P}|. With this approach, we need to use more values
(w(k− 1)) for the second coordinate in order to establish the Separation Principle.
However, the definition of the auxiliary order is simpler. Now it is enough to take
α < β in Q when there exist points u ∈ U and v ∈ V with φ(u) = α, φ(v) = β and
u‖v in PI .
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5. Concluding Remarks

The techniques we have introduced in this paper may shed some light on the
question first raised in [12]:

Question 5.1. Fix an integer w ≥ 3. Is the on-line dimension of the class of all
posets of width at most w and excluding the standard example S3 finite?

In [12] as well as in this paper, upper bounds are established on the on-line
dimension of a class of posets that have the general form s! where s is the number
of chains in an on-line chain partition. In [12], an exponential lower bound was
produced, but we do not see how to apply those techniques in this setting, and it
may indeed be the case that Assigner can actually construct an on-line realizer of
much more modest size for the class of posets of width at most k and excluding
k + k.

6. Acknowledgement

The authors would like to express their appreciation to two anonymous referees
who made a number of helpful suggestions for improving the exposition and spotted
a number of misprints in the original version of this paper.

References

[1] B. Bosek, S. Felsner, K. Kloch, T. Krawczyk, G. Matecki and P. Micek, On-line chain parti-

tions of orders: A survey, submitted.
[2] G. R. Brightwell, H. Kierstead and W. T. Trotter, A note on first fit coloring of interval

graphs, manuscript, 2006.

[3] B. Bosek and T. Krawczyk, The subexponential upper bound for on-line chain partitioning
problem, to appear.

[4] B. Bosek, T. Krawczyk and E. Szczypka, First-fit algorithm for on-line chain partition prob-
lem, SIAM J. Discrete Math., Volume 23, Issue 4 (2010), 1992–1999.
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