IR

ILLiad TN: 1

Journal Title: Order
Volume: 11

Issue: 2

Month/Year: 1994
Pages: 127-134

Article Author: Brightwell

Article Title: The dimension of suborders of
the Boolean lattice

.

Call#: QAZ78.7 .072X v.11
Location: 4E - 1/5

William Trotter (wt48)
School of Mathematics
Georgia Tech

Atlanta, GA 30332

Faculty
Math

e




This article has been provided to you by the Information Delivery
Department at the Georgia Tech Library.
Please contact us at 404-894-4511 or delivery@library.gatech.edu if you
have any questions or concerns.

Notice: Warning Concerning Copyright Restrictions

The Copyright"LaW of the United States (Title 17, United States Code)
governs the making of photocopies or other reproductions of copyrighted
material. :

Under certain conditions specified in the law, libraries and archives are
authorized to furnish a photocopy or other reproduction.

This material may be protected by copyright law. Any reproduction or
distribution of this material, in any format, may be an infringement of the
Copyright Law. This reproduction is not to be “used for any purpose other
than private study, scholarship, or research.” If a user makes or later uses a
photocopy or reproduction for purposes in excess of “Fair Use,” that user
 may be liable for copyright infringement.



ler 11: 127-134, 1994. 127
1994 Kluwer Academic Publishers. Printed in the Netherlands.

L

he Dimension of Suborders of the Boolean
attice

- R BRIGHTWELL
rtment of Mathematics, London School of Economics, Houghton Street, London WC2A 2AE, UK.

mail: grbl0@phoenix.cambridge.ac.uk)

A. KIERSTEAD
pariment of Mathematics, Arizona State University, Tempe, Arizona 85287, U.S.A.

ail: kierstead@math.la.asu.edu)

V. KOSTOCHKA
litute of Mathematics, Siberian Branch of the Russian Academy of Sciences,
1090 Novosibirsk 90, Russia (E-mail: sasha@math.nsk.su)

T TROTTER
il ¢:ommunications Research, 445 South Street 2L-367, Morristown, NJ 07962, US.A.,
i Department of Mathematics, Arizona State University, Tempe AZ 85287, US.A.

ail: wtt@bellcore.com)

wnmunicated by W. T. Trotter

«ived: 20 September 1993; accepted: 15 May 1994)

sstract. We consider the order dimension of suborders of the Boolean lattice By,. In particular we
iw that the suborder consisting of the middle two levels of B, has dimension at most 6 log n. More
liy, we show that the suborder consisting of levels s and s + k of B, has dimension O(lc2 log n).
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. Introduction

or any positive integer n, let [n] = {1,2,...,n}, let By, be the collection of subsets
{ |n], and let B, = (Bn,C) denote the Boolean lattice, where the subsets of [n]
¢ ordered by inclusion. For a finite set A, let C(A, k) denote the collection of

lement subsets of A. For integers n,s and ¢t with 0 < s <t < n, let Bn(s,t)
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128 G. R. BRIGHTWELL ET Al MENSION OF SUBORDERS OF BOOLEAN LAT1

denote the restriction of By, to C([n], s)UC([n],?). Finally, let dim(s, ¢; n) denote th
(order) dimension of By (s,t). We refer the reader to the monograph [7] for addition;
background material on dimension theory.

The function dim(s,?;n) was first studied by Dushnik [1] in 1950, but estim
for the function are surprisingly poor, except in the case s = 1. In this case, Dushni
noted the following useful reformulation of the problem.

ROPOSITION 1.5 [4]. For all positive inte
ieger satisfying

d
n—1 t
— <1,
"( ¢ ) (t + 1)
1 dim(1,t;n) < d. In particular,
PROPOSITION 1.1. For all positive integers t and n, 1 <t < n, dim(1,t;n) is th
least positive integer d for which there exists a set X of d linear orderings of |n

such that for all X € C([n],t) and all y € [n]— X, there exists L € X such that i
L, y is greater than every element of X.

dim(1,¢;n) < (¢ + 1)*log n.

Jetermining dim(1,t;n) for ¢ a small grow
pen problem. Moreover, until recently, ve
With the aid of Proposition 1.1, Dushnik [1] proved the following result, establishin ¢ are two well known trivial bounds.
the exact value for dim(1,¢;n) when ¢ > 2/n — 2.
JROPOSITION 1.6. For all positive intege
THEOREM 1.2 [1]. Let n and t be positive integers withn > 4 and 2\/n -2 < t

n — 1. Then let j be the unique integer with 2 < j < +/n for which dim(s’, t'; n') < dim(s, 25 n).

| '2 2 ., . .
l" - 2; - J St< |.n B _] - _1'- G- } PROPOSITION 1.7. For all positive niege

Then dim(s —r,t —r;n—7) < dim(s, t; n).

dim(1,t;n) =n —j + 1.
next two results are given by Hurlbert,

In the remainder of this paper, we will discuss estimates for the dimension of ordere
sets. For this reason, we will omit “floors” and “ceilings” from expressions wh
only have meaning for integers.

For fixed t, Spencer [6] established the asymptotic behavior of dim(1,t; n).

EOREM 1.8 [5]. For each positive inte
dim(2,n — 2;n)=n-—1L

THEOREM 1.2 [6]. For fixed ¢ [IEOREM 1.9 [5]. For each positive inte

dim(1,¢; n) = O(log log n). dim(2,n —3;n)=n— 2.

The following elementary result is an exercise in [7] and follows easily from Dush-
nik’s proof of Theorem 1.2.

ln fact, it is shown in [5] that if 2¢/n <1
24 (n —1)/j, for some positive integer

itive i : Whlle preparing this manuscript, we ha

PROPOSITION 1.4. For all positive integers t and n with t*> < n, {he following result.

t?/4 < dim(1,t; n).

HEOREM 1.10 [2]. For each integer k .

In view of Proposition 1.4, the following result of Fiiredi and Kahn [4] establishes
the value of dim(1,¢;n) within a multiplicative factor of order log ¢, if ¢t = Q(n¢).
The proof is simply a matter of taking d linear orderings of [n], uniformly at random
from the set of all possible linear orderings, and noting that the probability that thesc
do not form a family X as in Proposition 1.1 tends to 0.

dim(k,n — k;n) =n — 2.

n (his note, we provide the following uj
mrameters dim(1,2(t — s);n) and ¢ — s.
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UC([n],t). Finally, let dim(s, t; n) denote tli
he reader to the monograph [7] for additio
Ty.

idied by Dushnik [1] in 1950, but estima
ccept in the case s = 1. In this case, Dushni
n of the problem.

POSITION 1.5 [4]. For all positive integers t, n, with t <mn, if d is a positive
vger satisfying

al™7 N (2 ’ <1
t t+1 ’
n dim(1,t;n) < d. In particular,

tegers t and n, 1 < t < n, dim(1,t; n) is th
> exists a set Z of d linear orderings of |n
y € [n] — X, there exists L € X such that i

dim(1,t;n) < (T + 1)%log n.

rmining dim(1,t;n) for ¢ a small growing function of n remains an intriguing
¢n problem. Moreover, until recently, very little was known for the case s > 1.
. [1] proved the following result, establishin » are two well known trivial bounds.

o OPOSITION 1.6. For all positive integers s < s' <t' <t < n' < n,
itive integers withn > 4 and 2./n -2 < 1 ¢
with 2 < j < /7 for which

D+U—D1
_ 1 .

dim(s’,'; n) < dim(s, t; n).
ROPOSITION 1.7. For all positive integers r < s <t < n,

dim(s — r,t — r;n —r) < dim(s, ; n).

The next two results are given by Hurlbert, Kostochka and Talysheva in [5].

iscuss estimates for the dimension of ordere

ors” and “ceilings” from expressions whic THEOREM 1.8 [5]. For each positive integer n with n 2 5,

he asymptotic behavior of dim(1,¢; n). dim(2,n—-2n)=n~-1.

HEOREM 1.9 [5]. For each positive integer n with n > 6,

dim(2,n —3;n)=n-—2.

xercise in [7] and follows easily from Dust In fact, it is shown in [5] that if 2¢/n <t < n—2and ¢ is not an integer of the form

j =2+ (n—1)/j, for some positive integer j, then dim(2,t;n) = dim(1,t —1;n —1).
While preparing this manuscript, we have just learned that Fiiredi [2] has proven

tegers t and n with t* < .
& and n with 1 < n, the following result.

THEOREM 1.10 [2]. For each integer k > 3, there exists ng so that if n > ng, then

ng result of Fiiredi and Kahn [4] establishe
plicative factor of order log ¢, if t = Q(n®
linear orderings of [n], uniformly at randor
ngs, and noting that the probability that thes
n 1.1 tends to 0.

dim(k,n —k;n)=n—2.

In this note, we provide the following upper bound on dim(s,?;n) in terms of the
parameters dim(1, 2(t — s);n) and t —s.
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Jur upper bound is not too far this lower bou
1) are relatively close (see Problem 4.2).

THEOREM 1.11. For all positive integers k, n with 2k < n, there exists a collecii
Z of at most dim(1,2k;n) + 18klog n linear extensions of By, such that for an
incomparable pair (S,T) € B, x By with |S| < |T| < k + |S|, there exists L «¢

such that T < S in L. In particular, . Some Combinatorial Lemmas

dim(s, s + k; n) < dim(1, 2k;n) + 18k log n, [ prove Theorem 1.11, we need to provide

ions of By,. This family will be made up ¢
wsigned to deal with those paits (S, T) wh
signed to handle the remaining pairs. Ou
«els; in the next section, we shall apply it v

for every positive integer s, with s + k < n.
Using Theorem 1.5, we have the following corollary.

COROLLARY 1.12. For all positive integers s, k and n, with s + k <n, 'MMA 2.1. For all positive integers c

lim(1, c; n) linear extensions M, M,,...,!
incomparable pairs (S, T) € Bn X B, with |
I'< S in M;.

Proof. For any linear ordering o of [n], ¢
on B, with respect to o as follows. For tv
only if the o-largest element of SAT = (S'-
(o) is a linear extension of Bi.

Let d = dim(1, c; n); choose d linear ord
il X e B, with1 < |X|<candally€[r
greater than every element of X in o;. Let

Consider an incomparable pair (S,T) €
y€eS—Tand let X =T - S. Then there
ery element of X in 0. Thus 7' < S in .

dim(s, s + k;n) = O(k*log n).

When k = 1, we can do a little better.

THEOREM 1.13. For every positive integer n, there exists a collection X of 6 log,
linear extensions of By, such that for any incomparable pair (S, T) € B, x B, wit
|T| = 14 |S|, there exists L € X such that T < S in L. In particular,

dim(s, s + 1;n) < 6log; n,
for every positive integer s with s +1 < n.

For some values of s and k, we know that the inequalities in Theorems 1.11 ang
1.13 are far from tight. For example, the following asymptotic formula is prove i
in [7}, based on work [3], and following earlier results of Spencer [6]. For positive integers a, b, k,t and n with k
{f:: i € [n]} of functions from [t] to [a]
THEOREM 1.14. C([n], b), there exists 7 € [t] with |{fi(7):

dim(1,2;n) =g lg n+ (1/2+ o(1)) 1g 1g Ig n. ILEMMA 2.2. For positive integers a,b, k,

For the middle two levels of the Boolean lattice, our upper and lower bounds are
iglg n+ (1/2+0(1)lg Ig g n < dim(s, s + 1; 25 + 1) < 6logy n. ion there exists an (a,b, k1, n)-good seq:
Proof. Let S be the set of all functio
[1,..., fn independently uniformly at ran
{hat this sequence is not (a, b, k, 1, n)-good

However, we should comment that when k > log n, but k and s are both o(n),
the inequality in Theorem 1.11 is relatively tight. This follows from the observation
that

dim(s, s + k;n) > dim(1, k+ 1;n — s + 1). Prob [|{ﬁ(r): ieX}| < Ic] < (Z><
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Our upper bound is not too far this lower bound whenever dim(1, k;n) and dim(1, 2k;
) are relatively close (see Problem 4.2).

ers k, n with 2k < n, there exists a collecti
linear extensions of B, such that for ar
jith |S] < |T| < k + |S|, there exists L €

. Some Combinatorial Lemmas

18klog n, To prove Theorem 1.11, we need to provide an appropriate family ¥ of linear exten-

ions of B,,. This family will be made up of two sets of extensions; the first set is
igned to deal with those pairs (S,T) where T'— S is small, and the second set is
csigned to handle the remaining pairs. Our first lemma concerns the first of these
ets; in the next section, we shall apply it with ¢ = 2k.

<n.
ving corollary.

iegers s, k and n, with s + k < n, :
JEMMA 2.1. For all positive integers ¢ and n with 1 < ¢ < n, there exist d=

lim(1, ¢c;n) linear extensions M, M, ..., My of B, with the property that for all
ncomparable pairs (S, T) € By x By with |T — S| < c, there exists i € [d] such that
I'< S in M;.

Proof. For any linear ordering o of [n], define the lexicographical ordering L(o)
m B, with respect to ¢ as follows. For two sets S,T € Bp, T < S in L(0) if and
ly if the o-largest element of SAT = (S —T)U(T — S) is in S. Clearly, any such
(o) is a linear extension of By.

Let d = dim(1, ¢; n); choose d linear orderings o1, 02, ...,04 on [n] such that for
Ml X € B, with 1 < |X| < c and all y € [n] — X, there exists i € [d] such that y is
sreater than every element of X in o;. Let M; = L(o;), for all i € [d].

Consider an incomparable pair (S,T) € By x By such that [T’ — S| < ¢. Choose
y€ S —T and let X =T — S. Then there exists i € [d] such that y is greater than
every element of X in o;. Thus T' < S in M;. a

teger n, there exists a collection X of 6logzn
ny incomparable pair (S,T) € By, x B, with
hat T < S in L. In particular,

< n.

/ that the inequalities in Theorems 1.11 and
the following asymptotic formula is proved

g carlier results of Spencer [6]. For positive integers a, b, k,t and n with k < b < n and k < a, we define a sequence

(fi: i € [n]} of functions from [¢] to [a] to be (a, b, k,t,n)-good if, for each X €
C([n], b), there exists € [t] with [{fi(7): i € X}| > k.

1)lglglg n. LEMMA 2.2. For positive integers a,b, k,t,n with k < b <n and k < a, if

an lattice, our upper and lower bounds are

(:) ekt(k/a)(b—k)t <1,

< dim(s, s +1;25 + 1) < Glogg n. then there exists an (a, b, k,t,n)-good sequence.

Proof. Let S be the set of all functions from [t] to [a], and choose functions
fi,- .., fn independently uniformly at random from S. We estimate the probability
that this sequence is not (a, b, k, ¢, n)-good. For each r € [t] and each X € C([n],b),

when k > log n, but k and s are both o(n)
vely tight. This follows from the observatior

—s+1). Prob [Hﬁ(r); ieX}| < k] < (Z) (k/a)® < eF(k/a)'~*
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and so
Prob [aX € C([n],b) V7 € [t]|{fi(r): i € X}l < k]

< <’;) ¥ (k/a)®-F) < 1.

The lemma foliows. [}

LEMMA 2.3. Let a,b,k,t and n be positive integers with k < b < n and k < a. If
there exists an (a, b, k,t,n)-good sequence, then there exists a set

2= {L(e,1,j) a€la], T €[t] and j € [2]}

of 2at linear extensions of By, such that for all incomparable pairs (S,T) € B, x B,

with both |S| < |T| < k+|S| and |TAS| > b, there exists L € S such that T < S in
L.

Proof. Let {fi: i € [n]} be an (a,b,k,t,n)-good sequence. Let M; and M,
be two linear extensions of B, such that if S,T € B, satisfy |S| = |T|, then
T < Sin M, if and only if S < T in M. For S € By, a € [a], and T € [t],
let S(a,7) = {i € St fi(r) = a}. For all & € [a], 7 € [t], and j € [2], define
partial extensions M(a,7,j) on B, by T < S in M(e,,j) if and only if either
[T'(er, )| < |S(e, )| or both |T(, 7)| = |S(a, 7)| and T(a, 7) < S(a, 7) in M;. Itis
easy to check that each M(«, 7, j), is a partial order which extends B,,. Finally, let
L(a, 7, j) be any linear extension of M(e, 7, j) for all « € [a], 7 € [¢], and j € [2].

We claim that

2= {L(a,7,j): a €[a],7 € [t] and j € [2]}

satisfies our requirement. Consider an incomparable pair (S, T) € B, x B, with both
IS| < |T| < k+|S| and |[TAS| > b. Then there exists X C TAS with |X| = b. Since
{fi: i € [n]} is (a, b, k,, )-good, there exists 7 € [t] such that [{fi(r): i € X}| > k.
Since |T'| < k+ S|, there exists « € [a] such that either |T(a, 7)| < |S(a, 7)| or both
a € {fi(r): i € X} and |T(e, 7)| = |S(ev, 7)|. In the first case, T < S in L(a, 7, j) for
any j € [2]. In the second case, there exists i € X C TAS such that f;(r) = a. Thus
i € T(a, 7)AS(e, 7), so that T(a, 7) # S(a, 7). It follows that there exists j € [2]
such that T' < S in L(a, 7, j). [

3. Proofs of Theorems 1.11 and 1.13

We first prove Theorem 1.11. The result is trivial if 18klog n > n, so we may
assume that 18klog n < n. We now set a = 3k, b = 3k and t = 3log n, and use
the lemmas of the previous section. By Lemma 2.1, there is a collection ; of

IMENSION OF SUBORDERS OF BOOLEAN LAT

im(1, 2k; n) linear extensions of B, such th
lements of B, with |T"— S} < 2k, we have
Next we note that

(;k> eSk log n(k/3k)(3k-—k)310g n < n3keE

0 by Lemma 2.2, there is a (3k, 3k, k,3log
lls us that there is a set Z; of 18k log n line
' and T are incomparable sets with |S| < |2
T'AS| > 3k = b, and so ' < S in some
= 31UZX; then has the desired property. Th

For the proof of Theorem 1.13, we nee

2,k =1, and t = [lg n]. Observe fi
istinct functions from [t] to [3] is (3,2,1,
hat any pair of functions differ for some :
near extensions of B, provided by Lemma
jcorem, since if S and T are incomparable :

. Concluding Remarks

n stating the principal results (Theorems 1.1
h express our upper bounds in a form which :
pproach seems justified by the fact that for
ywer bounds differ by a multiplicative facto

Our results suggest several new problem:
lder ones, beginning of course with improy
r derived in this paper. Here are two ne
articularly appealing.

'ROBLEM 4.1. For a fixed positive intege
¢ so that dim(1,t;n) < ¢ log log n.

'"ROBLEM 4.2. For a fixed positive integer
dim(1, ks; n)/ dim(1, s; n).
r fixed values of k and n, what value of :

Note that Problem 4.2 is already interesting
% {catured in Theorem 1.11.



G. R. BRIGHTWELL ET A MIINSION OF SUBORDERS OF BOOLEAN LATTICE 133

(1, 2k; n) linear extensions of By, such that, whenever S and T are incomparable
sments of By, with [T — S| < 2k, we have T < S in some extension in X;.

5(7')1 i€ X}, < k] Next we note that

(;;c) e3klog n(k/3k)(3k—k)3]og ng n3ke3klog ng—6klog n < (6/3)610- log n <1,
by Lemma 2.2, there is a (3k, 3k, k, 31log n, n)-good sequence. Now Lemma 2.3
Is us that there is a set =, of 18k log n linear extensions of B,, such that, whenever
and T are incomparable sets with |S| < |T| < k + |S| and [T — S| > 2k, we have
AS| > 3k = b, and so T < S in some extension in ;. The combined family
Z1UZ; then has the desired property. This completes the proof of Theorem 1.11.

itive integers with k < b < n and k < a.
ce, then there exists a set

nd j € [2]}
For the proof of Theorem 1.13, we need only apply Lemma 2.3 with a = 3,
2, k =1, and t = [lg n]. Observe first that any sequence {f;: ¢ € [n]} of
stinct functions from [t] to [3] is (3,2,1,¢,n)-good: the condition states exactly
it any pair of functions differ for some argument. The collection X of 6logzn
car extensions of B, provided by Lemma 2.3 now satisfies the requirements of the
rem, since if S and T" are incomparable sets with |T'| = |S|+ 1, then [TAS| > 2.

for all incomparable pairs (S,T) € B, x B,
| > b, there exists L € T such that T < S in

), k,t,n)-good sequence. Let M; and M,
hat if S,T € B, satisfy |S| = [T, then
1 M;. For S € By, a € [a], and T € [t],
all o € [a], 7 € [t], and j € [2], define
T < S in M(a,7,j) if and only if either
|S(a, 7)| and T(e, 7) < S(v, 7) in M;. Tt is
partial order which extends B,,. Finally, let
o, T, ) for all o € [a], T € [t], and j € [2].

Concluding Remarks

stating the principal results (Theorems 1.11 and 1.13) of this paper, we have chosen
express our upper bounds in a form which makes the analysis straightforward. This
proach seems justified by the fact that for most of our inequalities, our upper and
wer bounds differ by a multiplicative factor which is at least as large as log log n.
Our results suggest several new problems and reinforce the importance of some
ler ones, beginning of course with improvements to the various inequalities cited
or derived in this paper. Here are two new problems which we consider to be
rticularly appealing.

d j € [2]}

comparable pair (S, T) € B, x B, with both
 there exists X C TAS with | X| = b. Since
Xists 7 € [t] such that |{fi(7): i € X}| > k.
such that either |T'(a, 7)| < |S(e, 7)| or both
7)|. In the first case, T' < S in L(a, T, 5) for
sts i € X C TAS such that f;(r) = . Thus
S(a, 7). It follows that there exists j € [2]

O

PROBLEM 4.1. For a fixed positive integer t, find (or estimate) the least number
so that dim(1,t;n) < ¢; log log n.

PROBLEM 4.2. For a fixed positive integer k, investigate the behavior of the ratio

dim(1, ks; n)/ dim(1, s; n).
3 or fixed values of k and n, what value of s makes this ratio maximum?
ult is trivial if 18klog n > n, so we may
' a = 3k, b = 3k and t = 3log n, and use
y Lemma 2.1, there is a collection X; of

Note that Problem 4.2 is already interesting for small values of k, as the value k = 2
fcatured in Theorem 1.11.
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Note added in proof

After this manuscript was submitted, Kostochka improved the upper bound on dim(s, s+1; n) by showing
that dim(s, s + 1;n) = O(log n/ log log n). Kierstead showed that dim(1, k; n)»(1 — o(1))2*—21g Ig n
when k < lglgn — lglglg n. Kierstead also showed that k21g n/331g k& < dim(1,k;n), whei

2lg

n<k<2y/n — 2. Proofs will appear elsewhere.

References

1. Dushnik, B. (1950) Concerning a certain set of arrangements, Proc. Amer. Math. Soc. 1, 788-796

2. Fiiredi, Z. personal communication.

3. Firedi, Z., Hajnal, P., R3dl, V. and Trotter, W. T. (1991) Interval orders and shift graphs, ii
A. Hajnal and V. T. Sos (eds), Sets, Graphs and Numbers, Colloq. Math. Soc. Janos Bolyai 60
297-313.

4. Firedi, Z. and Kahn, J. (1986) On the dimensions of ordered sets of bounded degree, Order 3
17-20.

5. Hurlbert, G., Kostochka, A. V. and Talysheva, L. A. On the dimension of P(2, k; n) for large k
to appear.

6. Spencer, J. (1972) Minimal scrambling sets of simple orders, Acta Math. Hungar. 22, 349-353,

7. Trotter, W. T. (1991) Combinatorics and Partially Ordered Sets: Dimension Theory, The John

Hopkins University Press, Baltimore, Maryland.

Jrder 11: 135-148, 1994.
ty 1994 Kluwer Academic Publishers. Printed in the .

Generalized Dimension of
ts MacNeille Completion

PHILIPPE BALDY and JUTTA MIT/Z
LIRMM, CNRS et Université de Montpellier I1, 161 r

Communicated by M. Pouzet

(Received: 30 May 1994; accepted: 8 July 1994)

Abstract. We investigate generalizations of the order
ind study the question for which classes the generaliz
mpletion is the same. We present proofs for a nun
njecture.

Mathematics Subject Classification (1991). 06A07.

Key words. Ordered sets, dimension, generalized dir

Introduction

The dimension of an ordered set, defined
number of linear extensions such that their
notion can be generalized by taking instead
for the realizer. For an ordered set P =
containing all chains we will denote by

C-dim P

{he least number of ordered sets C; = (X,
P == Ci (i.e., more precisely <p= N:.
of interval orders, we get the interval dime
The MacNeille completion L(P) of an or
the ordered set can be order-preserving e1
order dimension (i.e., the C-dimension whe
same for an ordered set P and its MacNeille
al. [ 7] show that the same property holds al:
we will show that this property remains t
atisfying an equivalent to a theorem by
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