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Abstract 

We show that a proper coloring of the diagram of an interval order I may require 
1 + I-log 2 height(l)] colors and that 2 + l-log 2 height(I)'] colors always suffice. For the proof of 
the upper bound we use the following fact: A sequence C 1 ..... C h of sets (of colors) with the 
property 

(ct) C ~ C  i _ l U C  i for all l < i < j ~ < h  

can be used to color the diagram of an interval order with the colors of the C i. We construct 
s-sequences of length 2"-2 + t_(n _ 1)/2)J using n colors. The length of s-sequences is bounded 
by 2"-1 + L( n _ 1)/2)/and sequences of this length have some nice properties. Finally we use 
s-sequences for the construction of long cycles between two consecutive levels of the Boolean 
lattice. The best construction known until now could guarantee cycles of length f~(N c) where 
N is the number of vertices and c ~ 0.85. We exhibit cycles of length /> ¼N. 

Keywords: Interval order; Diagram; Chromatic number; Hamiltonian path; Boolean 
lattice 

1. Introduction and overview 

For  a nonnegat ive integer k, let Ik be the interval order  defined by the open intervals 

with endpoints  in { 1 . . . . .  2k}. It has height 2 k - 1 and is isomorphic  to the canonical 

interval order  of  this height (see [1] for canonical  interval orders). 

Two vertices v and w in Ik are a cover, denoted by v ~(w, exactly if the right endpoint  
of  the interval of  v equals the left endpoint  of  the interval of  w. The diagram Dt~ of  lk is 

_ _ m  
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thus recognized as the shift graph ff(2k, 2) (see [1] for shift graphs). In general we 
denote by Dt the diagram of an interval order I, and we denote the chromatic number 
of the diagram by z(DI). 

We include the (well-known) proof of the next lemma since we will need similar 
methods in later arguments. 

Lemma 1.1. 

z(Dtk) = ~log2 height(lk)7 = k. 

Proof. Suppose we have a proper coloring of DI, with colors {1 . . . . .  c}. With each 
point i associate the set C~ of colors used for the intervals having their right endpoint 
at i. Note that C1 = 0. For  1 ~< i < j ~< 2 k, we have C ~  Ci; otherwise the interval (i,j) 
would have the same color as some interval (l, i). This proves that all of the 2 k subsets 
Ci of {1 . . . . .  c} are distinct; therefore 2 c ~> 2 k and c >/k. 

A coloring of DI, using k colors can be obtained by the following construction. Take 
a linear extension of the Boolean lattice 9~k and let Ci be the ith set in this list. Assign 
to the interval (i,j) any color from CJC~. A coloring obtained in this way is easily seen 
to be proper. [] 

We derive a result for later use and a theorem from this construction. 

Result 1.2. In a coloring of D~, which uses exactly k colors, every point i • { 1 . . . . .  2 k} is 
incident with an interval of each color. 

Proof. The crucial fact here is that every subset of {1 . . . . .  k} is the Ci for some i. Now 
choose any i • { 1 . . . . .  2 k} and a color c • { 1 . . . . .  k}. We have to show that an interval of 
color c is incident with i. 

If c • Ci, then this is immediate from the definition of Ci. Otherwise, i.e., if c ~ C~, 
then there is a Jc > i such that Ci, = Ci w {c} and the interval (i, jc) is colored c. [] 

With the next lemma we improve the lower bound: There are interval orders I 
with x(DI)/> 1 + log2(height(l)). Compared with Lemma 1.1, this is a minor improve- 
ment, but we feel it worth stating, since later we will prove an upper bound of 
2 + log2(height(l)) on the chromatic number of the diagram of I. 

Lemma 1.3. For each k there is an interval order I* such that 

z(D,.) >~ 1 + I-log2 height(I~') 7 = k. 

Proof. Take I* as the order obtained from I k (see Lemma 1.1) by removing the 
intervals of odd length, i.e., the interval order defined by the open intervals (i,j) with 
i,j E{1 . . . . .  2 k} and j - i = 0(mod 2). The height of I~ is 2 k-1 - 1 which is the height 
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of I k_ 1; however, as we are now going to prove, a proper coloring of I* requires at 
least k colors. Note that two intervals ( i l , j l )  and (i2,J2) with j l  ~< i2 induce an edge in 
the diagram of I* if either Jl = i2 or j~ = i2 - 1. 

In I* we find an isomorphic copy of I k -1  consisting of the intervals (i,j) with 
both i and j odd. Call this the odd l k -1 .  The even l k - 1  is defined by the interval (i,j) 

with i and j even. Let Ci be the set of colors used for intervals with right end-point 
2i - 1, and let Di be the set of colors used for intervals with tight end-point 2i. From 
Lemma 1.1, we know that if both the odd and the even copy only need k - 1 colors, 
then the C~ and the D~ have to form linear extensions of the Boolean lattice ~k -  1" NOW 
define (7~ as the set of colors used for intervals with left-endpoint 2i - 1. From Result 
1.2, we know that (7~ is exactly the complement of C~. With the corresponding 
definition, b~ and Di are seen to be complementary sets as well. Note that a proper 
coloring requiting C~ c7 Di = 0. We therefore have C~ c D~. A similar argument gives 
Di _~ C~+ 1. Altogether we find that the C~ have to be a linear extension of ~k-1 with 
Ci ~- Ci+~ for all i. This is impossible. The contradiction shows that at least k colors 
are required. [] 

Now we turn to the upper bound which we view as the more interesting aspect of 
the problem. 

Theorem 1.4. I f  I is an interval order, then 

x(Dt) ~< 2 4- log2 height(I). 

Proof. In this first part of the proof, we convert the problem into a purely combina- 
torial one. The next section will then deal with the derived problem. 

Let I = (I/, < )  be an interval order of height h, given together with an interval 
representation. For  v e V, let (lv, r~] (left open, tight closed) be the corresponding 
interval. With respect to this representation, we distinguish the 'leftmost' h-chain in I. 
This chain consists of the elements x l  . . . .  , Xh where xl has the leftmost right-endpoint 
r~ among all elements of height i. It is easily checked that xl . . . . .  xh is indeed a chain. 
Now let rl = rx, be the right endpoint of x~'s interval and define a partition of the real 
axis into blocks. The ith block is 

B(i) = [ri, ri+ 1). 

This definition is made for i = 0 . . . . .  h with the convention that B(0) extends to minus 
infinity and B(h) to plus infinity. 

In some sense these blocks capture a relevant part of the structure of I. This is 
exemplified by two properties. 

• The elements v with rv ~ B(i) are an antichain for each i. This gives a minimal 
antichain partition of I. 

• If r v ~  B( j ) ,  then Iv ~ B(i) for some i less than j. 
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Suppose we are given a sequence C1 . . . . .  Ch of sets (of colors) with the following 
property: 

(e) Cj ~ Ci-  1 u Ci for all 1 < i < j ~< h. 

A sequence with this property will henceforth be called an e-sequence. The e-sequence 
C1 . . . . .  Ch may be used to color the diagram Dr with the colors occurring in the C~. 
The rule is: to an element v e V with lv e B(i) and rv e B( j )  assign any color from 

Cj \ (C i -  1 w Ci). This set of colors is nonempty by the (e) property of the sequence Ci, 
since i <  j. We claim that a coloring obtained this way is proper. Assume to the 
contrary that there is a covering pair w < v such that w and v obtain the same color. 
Let rw e B(k) and I, e B(i). Since w < v, we know that k ~< i. Due to our coloring rule, 
we know that the color of w is an element of Ck and the color of v is not contained in 
Ci_ ~ w Ci; hence k < i - 1. This, however, contradicts our assumption that w < v, 
since/x, e B(i - 1) and I~ >1 rx, = ri gives w < xi < v. 

We have thus reduced the original problem to the determination of the minimal 
number of colors which admits a e-sequence of length h. We will demonstrate in 
next section, Lemmas 2.1 and 2.3, how to construct a e-sequence of length 
2"- 2 .~_ [.(n + 1)/2 J using n colors. This will complete the proof of the theorem. [] 

In Section 3 we give an upper bound of 2"-1 + [.(n + 1)/2J for the maximal length 
of a e-sequence. From the proof, we derive some further properties e-sequences of this 
length necessarily satisfy. Finally we apply the construction of long e-sequences to the 
problem of finding long cycles between two consecutive levels of the Boolean lattice. 
A famous instance of this problem is the question whether there is a Hamiltonian cycle 
between the middle two levels of the Boolean lattice (see e.g., [2] or [-3]). The best 
constructions known until now could guarantee cycles of length t2(N c) where N is the 
number of vertices and c ~ 0.85. We exhibit cycles of length >~ -14 N. 

2. A construction of long a-sequences 

Let t(n, k) denote the maximal length of a sequence C~ of sets satisfying: 
(1) C,c_{1 . . . . .  n}, 

(2) ICi[ = k and 
(e) if i < j then Cj 9g Ci-  1 w Ci. 

Lemma 2.1. 

t ( n , k ) > ~ ( n - l )  
k + 1 .  

Proof. The sequences actually constructed will have the additional property 
(4) I C i - l w C i l = k + l f o r a l l i > ~ 2 .  

The proof is by induction. For all n and k = 1 or k = n the claim is obviously true. 
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N o w  suppose  that  two or-sequences as specified have been constructed on 
{1, . . . , n  - 1}: first a sequence of k-sets d = A1 . . . . .  A~ of length s = (~k 2) + 1, and 

n--2 second a sequence of (k - 1)-sets ~ = B~ . . . . .  Bt of  length t = (k-~) + 1. 
P rope r ty  (4) guarantees  that  there is a pe rmuta t ion  n of  the colors such that  

As = B~ w B~2. N o w  let 

tA~ if l ~ < i ~ < s ,  
Ci = ~B~_~+ l u {n} i f s + l ~ < i ~ < s + t - l .  

The length of the new sequence is s + t - 1 = ( 'k  ~) + 1. Propert ies  (1) and (2) are 

obviously  true for the sequence C~ and p roper ty  (4) is true for both  the ~ '  and the 
sequence. These observa t ions  and the choice of  rt give p roper ty  (4) for the cg se- 

quence. It  remains to verify p roper ty  (~). If i < j < s + 1, this p roper ty  is inherited 
f rom the ~¢ sequence. If s + 1 < i < j, it is inherited f rom the ~ sequence. In case 
i < s + 1 ~< j, we have n ~ Cj and n ~ C~_ 1 w C~. The  remaining case is s + 1 = i < j. 
Here  the choice of  rt and the sacrifice of  Bx show that  C~wC~+~ = 
A, u B~ u {n} = B~ u B~ u {n}. Again the p roper ty  (~) can be concluded from this 

p roper ty  for the ~ sequence. [] 

Fo r  k = 2 and  k = n - 1, we can prove  that  the inequali ty of  L e m m a  2.1 is tight, but 

in general the value of t(n, k) is open. 

Problem 2.2. De te rmine  the true value of t(n, k). 

Let T(n) denote  the maximal  length of a sequence Ci of sets satisfying: 
(1) C ~ _  {1 . . . . .  n} and 

(~) if i < j then Cj ~ Ci-  1 w Ci. 

Lemma 2.3. 

k odd 

Proof.  Let  ~ ( n ,  k) be the (n, k)-sequence constructed in the preceding lemma.  We 
claim that  La = .~e~l(n, 1) ~3 L~'~3(n, 3) ~ .Labs(n, 5) t~ . . .  with appropr ia te  pe rmuta -  

t ions nj is a ~-sequence of subsets of  {1 . . . . .  n}. The nk's can be found recursively. 

rt~ = id and if Ztk_ 2 has been determined,  then nk is chosen as a pe rmuta t ion  such that  
the last set of  the sequence Zany-2(n ' k - 2) is a subset of  the first set of  .La~(n, k). Let 
Ci be the ith set in the sequence &a. We now check proper ty  (~). If  the three sets Ci_ 1, 
C~ and Cj are in the same subsequence .L~'~(n,k), then the p roper ty  is inherited 
f rom this subsequence.  If Ci ~.Sf~k(n,k) and Cj e.L~'~*'(n,k ') with k ~< k ' - 2 ,  then 
ICi- 1 u Cil < [Cj[ is a consequence of p roper ty  (4) for the subsequence LP~(n, k), and 
gives the claim in this case. There  remains  the si tuation where C~_ ~ is the last set of its 
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subsequence. The  choice of the gk gives C~- 1 c C~ and the proper ty  reduces to Cj ~ C~, 
which is obvious.  

The  length of ~ is the sum over  the length of the Z,e~*(n, k) used in .L~'. This is the 
sum over  (,~1) + 1 with k odd, which is 2 " -2  + L(n + 1)/2J. [] 

3. The structure of very long a-sequences 

Theorem 3.1. Let qC=Cl , . . . ,C t  be a a-sequence of subsets of {1 . . . .  ,n}. Then 
t~<2  "-1  +L(n+ 1)/2_~ 

Proof.  We start  with some definitions. Fo r  1 ~< i ~< t - 1, let 

Si = {S: Ci+l c S ~_ CiwCi+l}  

and s~ = ISi[. Observe  that  with r~ = ICi\C~+I] we have the equat ion 

O) 

si = 2 r ' -  1. (2) 

We now prove  two impor t an t  propert ies  of  the sets Si 

• Si c~ Sj = 0 / f i  :~ j. Assume to the con t ra ry  that  S e Si n Sj and let i < j. F r o m  the 
definition of the S~, we obta in  C~+ 1 c S ~_ C~ u C~÷~ which contradicts  the (ct) prop-  
erty of  the sequence cg. 

• ~ n Si = 0 for all i. Assume Cj e S~. I f j  ~< i, then Ci+ 1 c Cj gives a contradict ion.  
If  j = i + 1, note  that  Ci+ 1 ¢ S~ from the definition. If j > i + 1, the contradic t ion 
comes f rom C~ ~_ C~ u C~+ 1. 

Therefore,  ~ and the S~ are pairwise disjoint subsets of .~ , .  This gives the inequality 

t - 1  

2">>-t + ~' si (3) 
i = l  

We now part i t ion the indices { 1 . . . . .  t - 1 } into three classes 

• 11 = {i: Ifil = IG+al};  note that  i e l l  implies si >1 1. 
• 12 = {i: IGI < IG+xl};  trivially s~ i> 0 for i e l2 .  
• I3 = {i: IGI > IG+ll}; note that  if i e l3 ,  then the corresponding s~ is relatively 

large, i.e., s~ ~> 2 Ic'l-lc'+ ,L+ 1 _ 1. This est imate is a consequence of Eq. (2) and the fact 

that  C~+ 1 has to contain  an element not  contained in C~. 
First  we investigate the c a s e  13 = 0. This condit ion guarantees  that  the sizes of  the 

sets in ff  is a nondecreasing sequence. Since 8 ,  has n + 1 levels, the size of  the sets in 

cg can increase at most  n times, i.e., [I21 ~< n and  I l l l /> t - 1 - n. It  follows that  

2 " > ~ t +  ~ s~+ ~ s i > ~ t + [ l x l > ~ t + ( t - l - n ) .  
ie l l  ieI2 

This gives 2t ~< 2" + (n + 1); hence t ~< 2"-  1 + L(n + 1)/2J in this case. 
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The c a s e  I 3 ~= 0 is somewhat  more  complicated.  Let the n u m b e r  of  descending steps 
be d and 13 = {i~ . . . . .  id}. Let mi, denote  the number  of  levels the sequence is decreasing 

when going from Cij to Cij+t, i.e., mij = ICi, I - IC~,+11 and s~j 1> 2 m'~+l - 1. Again we 
can est imate the size of  12, namely  1121 ~< n + y d= 1 m!c It follows that  

d 

2 " ~ > t +  ~ s , +  ~ s , +  ~ , s ,>>- t+ l l l l+  ~ (2re 'J+1-  1) 
i~11 iEl2 i~la j= 1 

d 

/> t + ((t - 1) - 1121 - 1131) + ~ 2 m'+l  - d 
j = l  

>~t+ t - l - n -  m i , - d  + ~ 2 m " + l - d .  
j = l  j = l  

C o m p a r i n g  this with the calculat ions made  for the c a s e  13 = 0, we find that  
t > /2" -1  + l_(n + 1)/2J would require d a 2m,+1 -- ~ j  = 1 m~j -- 2d + ~ i=  1 ~< 0. Fo r  each j, 
we have 2 m~j > m!~ - 2; hence the above  inequali ty can never hold. [] 

Remark. Let T*(n) = 2 ~-1 + [_(n + 1)/2J be the upper  bound  from the theorem. We 
have seen that  a or-sequence cg of length T*(n) can only exist if 13 = 0. Moreover ,  the 
following condi t ions follow from the a rgument  given for Theorem 3.1. 

(1) There  are exactly n increasing steps, i.e., 1121 = n. 
(2) If  i e I1, then s~ = 1, i.e., any two consecutive sets of  equal size have to be a shift: 

Ci+ 1 = (Ci\{x}) w {y} with x E Ci and y q~ Ci. If  i e 12 then s~ = 0, i.e., if ICil < IC~+ 11, 
then there is a con ta inment  C~ c C~+ 1. 

(3) Every element of  ~n is either an element of  ~ or  appears  as the unique element 

of  some S~, i.e., as C~ w Ci+ i- 

F r o m  these observat ions,  we obtain  an al ternate  in terpreta t ion for a sequence cg of 

length T*(n) in :~n. In the d iagram of ~n,  i.e., the n-hypercube,  consider the edges 
(Ci, Ci+ 1) and for i ~ I2 for i e I1 the edges (Ci, Ti) and (T/, C~+ 1) where T/is the unique 
m e m b e r  of  Si, i.e., T~ = Ciw Ci+l. This set of edges is a Hami l ton ian  pa th  in the 

hypercube  and respects a s t rong condi t ion of being level accurate.  After having 
reached the kth level for the first time the path will never come back to level k - 2 (see 
Fig. 1 for an example,  the bullets are the elements of  a very long ~t-sequence). 

Problem 3.2. D o  sequences of  length T*(n) exist for all n? 

We are hopeful that  such sequences exist. Our  op t imism stems in par t  f rom 
computa t iona l  results. The  number  of  sequences start ing with 0, {1}, {2}, ... ,  {n} is 
1 for n ~< 4, l0 for n = 5, 123 for n = 6 and there are thousands  of solutions for 
n = 7. The  next case n = 8 could not  be handled by our  p rogram,  but  Markus  
Fu lmek  (personal  communica t ion)  wrote a p rog ram which also resolved this case 
affirmatively. 
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Fig. 1. A level accurate path in ,~4- 

4. Long cycles between consecutive levels in ~', 

Let B(n, k) denote the bipartite graph consisting of all elements from levels k and 
k + 1 of the Boolean lattice ~ . .  A well-known problem on this class of graphs is the 
following: ls B(2k + 1, k) Hamiltonianfor all k? Until now it was known that this is the 
case for k ~< 9. Since the problem seems to be very hard, some authors have attempted 
to construct long cycles. The best result (see I-3]) lead to cycles of length E2(N c) where 
N = 2(2k~ 1)  is the number of vertices of B(2k + 1,k) and c ~ 0.85. 

Theorem 4.1. In B(n, k), there is a cycle of lenoth 

Proof. Note that the graphs B(n, k) and B(n, n - k - 1) are isomorphic, it thus suffices 
to exhibit a cycle of length 4(~,=1 a) + 4 in B(n,k). To this end, take a =(-sequence 
C1 . . . .  ,Ct of ( k - D - s e t s  on {1 . . . . .  n - 2 } .  From Lemma 2.1, we know that 
t >/(~73) + 1 can be achieved. Now consider the following set of edges in B(n,k) 

• ( c ,  {n}, c ,  {n}) for 1 < i < t, 
• ( C i w C i + , w { n } , C i + , w { n } ) f o r  1 <~i<t ,  
• (C,u  {n}, C , w { n -  1, n} ) and (C, w {n - 1, n}, C , w { n -  1}), 
• ( C i w { n -  1 } , C i w C , + m w { n -  1})for 1 ~ < i < t ,  
• (C, w C i + l w { n -  1 } , C i + l w { n - 1 } ) f o r  l ~ < i < t ,  
• (C1 w { n -  1}, C10  { n -  1,n}) and (C1 ~ { n -  1,n}, C1 w {n}). 

The proof that this set of edges in fact determines a cycle of length 4t in B(n,k) is 
straightforward. [] 

With a simple calculation on binomial coefficients, we obtain a final theorem. 
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Theorem 4.2. There are cycles in B(2k + 1, k) of  length at least ¼ N. 
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