Colorings of diagrams of interval orders and α-sequences of sets

Stefan Felsner ${ }^{\text {a,*, }}$, William T. Trotter ${ }^{\text {b }}$
${ }^{\text {a }}$ Frei Universität Berlin, Fachbereich Mathematik, Institut für Informatik, Takustrasse 9. 14195 Berlin, Germany
${ }^{6}$ Department of Mathematics, Arizona State University, Tempe AZ 85287, USA

Received 7 January 1992; revised 6 July 1993

Abstract

We show that a proper coloring of the diagram of an interval order I may require $1+\left\lceil\log _{2}\right.$ height $\left.(I)\right\rceil$ colors and that $2+\left\lceil\log _{2}\right.$ height $\left.(I)\right\rceil$ colors always suffice. For the proof of the upper bound we use the following fact: A sequence C_{1}, \ldots, C_{h} of sets (of colors) with the property (a) $\quad C_{j} \notin C_{i-1} \cup C_{i} \quad$ for all $1<i<j \leqslant h$ can be used to color the diagram of an interval order with the colors of the C_{i}. We construct α-sequences of length $\left.2^{n-2}+\lfloor(n-1) / 2)\right\rfloor$ using n colors. The length of α-sequences is bounded by $\left.2^{n-1}+\lfloor(n-1) / 2)\right\rfloor$ and sequences of this length have some nice properties. Finally we use α-sequences for the construction of long cycles between two consecutive levels of the Boolean lattice. The best construction known until now could guarantee cycles of length $\Omega\left(N^{c}\right)$ where N is the number of vertices and $c \approx 0.85$. We exhibit cycles of length $\geqslant \frac{1}{4} N$.

Keywords: Interval order; Diagram; Chromatic number; Hamiltonian path; Boolean lattice

1. Introduction and overview

For a nonnegative integer k, let I_{k} be the interval order defined by the open intervals with endpoints in $\left\{1, \ldots, 2^{k}\right\}$. It has height $2^{k}-1$ and is isomorphic to the canonical interval order of this height (see [1] for canonical interval orders).

Two vertices v and w in I_{k} are a cover, denoted by $v<w$, exactly if the right endpoint of the interval of v equals the left endpoint of the interval of w. The diagram $D_{I_{k}}$ of I_{k} is

[^0]thus recognized as the shift graph $\mathscr{G}\left(2^{k}, 2\right)$ (see [1] for shift graphs). In general we denote by D_{I} the diagram of an interval order I, and we denote the chromatic number of the diagram by $\chi\left(D_{I}\right)$.

We include the (well-known) proof of the next lemma since we will need similar methods in later arguments.

Lemma 1.1.

$$
\chi\left(D_{I_{k}}\right)=\left\lceil\log _{2} \operatorname{height}\left(I_{k}\right)\right\rceil=k .
$$

Proof. Suppose we have a proper coloring of $D_{I_{k}}$ with colors $\{1, \ldots, c\}$. With each point i associate the set C_{i} of colors used for the intervals having their right endpoint at i. Note that $C_{1}=\emptyset$. For $1 \leqslant i<j \leqslant 2^{k}$, we have $C_{j} \nsubseteq C_{i}$; otherwise the interval (i, j) would have the same color as some interval (l, i). This proves that all of the 2^{k} subsets C_{i} of $\{1, \ldots, c\}$ are distinct; therefore $2^{c} \geqslant 2^{k}$ and $c \geqslant k$.

A coloring of $D_{I_{k}}$ using k colors can be obtained by the following construction. Take a linear extension of the Boolean lattice \mathscr{B}_{k} and let C_{i} be the i th set in this list. Assign to the interval (i, j) any color from C_{j} / C_{i}. A coloring obtained in this way is easily seen to be proper.

We derive a result for later use and a theorem from this construction.

Result 1.2. In a coloring of $D_{I_{k}}$ which uses exactly k colors, every point $i \in\left\{1, \ldots, 2^{k}\right\}$ is incident with an interval of each color.

Proof. The crucial fact here is that every subset of $\{1, \ldots, k\}$ is the C_{i} for some i. Now choose any $i \in\left\{1, \ldots, 2^{k}\right\}$ and a color $c \in\{1, \ldots, k\}$. We have to show that an interval of color c is incident with i.

If $c \in C_{i}$, then this is immediate from the definition of C_{i}. Otherwise, i.e., if $c \notin C_{i}$, then there is a $j_{c}>i$ such that $C_{j_{c}}=C_{i} \cup\{c\}$ and the interval $\left(i, j_{c}\right)$ is colored c.

With the next lemma we improve the lower bound: There are interval orders I with $\chi\left(D_{I}\right) \geqslant 1+\log _{2}(\operatorname{height}(I))$. Compared with Lemma 1.1 , this is a minor improvement, but we feel it worth stating, since later we will prove an upper bound of $2+\log _{2}($ height $(I))$ on the chromatic number of the diagram of I.

Lemma 1.3. For each k there is an interval order I_{k}^{*} such that

$$
\chi\left(D_{I_{k}^{*}}\right) \geqslant 1+\left\lceil\log _{2} \operatorname{height}\left(I_{k}^{*}\right)\right\rceil=k
$$

Proof. Take I_{k}^{*} as the order obtained from I_{k} (see Lemma 1.1) by removing the intervals of odd length, i.e., the interval order defined by the open intervals (i, j) with $i, j \in\left\{1, \ldots, 2^{k}\right\}$ and $j-i \equiv 0(\bmod 2)$. The height of I_{k}^{*} is $2^{k-1}-1$ which is the height
of I_{k-1}; however, as we are now going to prove, a proper coloring of I_{k}^{*} requires at least k colors. Note that two intervals $\left(i_{1}, j_{1}\right)$ and $\left(i_{2}, j_{2}\right)$ with $j_{1} \leqslant i_{2}$ induce an edge in the diagram of I_{k}^{*} if either $j_{1}=i_{2}$ or $j_{1}=i_{2}-1$.

In I_{k}^{*} we find an isomorphic copy of I_{k-1} consisting of the intervals (i, j) with both i and j odd. Call this the odd I_{k-1}. The even I_{k-1} is defined by the interval (i, j) with i and j even. Let C_{i} be the set of colors used for intervals with right end-point $2 i-1$, and let D_{i} be the set of colors used for intervals with right end-point $2 i$. From Lemma 1.1 , we know that if both the odd and the even copy only need $k-1$ colors, then the C_{i} and the D_{i} have to form linear extensions of the Boolean lattice \mathscr{B}_{k-1}. Now define \bar{C}_{i} as the set of colors used for intervals with left-endpoint $2 i-1$. From Result 1.2, we know that \bar{C}_{i} is exactly the complement of C_{i}. With the corresponding definition, \bar{D}_{i} and D_{i} are seen to be complementary sets as well. Note that a proper coloring requiring $C_{i} \cap \bar{D}_{i}=\emptyset$. We therefore have $C_{i} \subseteq D_{i}$. A similar argument gives $D_{i} \subseteq C_{i+1}$. Altogether we find that the C_{i} have to be a linear extension of \mathscr{B}_{k-1} with $C_{i} \subseteq C_{i+1}$ for all i. This is impossible. The contradiction shows that at least k colors are required.

Now we turn to the upper bound which we view as the more interesting aspect of the problem.

Theorem 1.4. If I is an interval order, then

$$
\chi\left(D_{I}\right) \leqslant 2+\log _{2} \operatorname{height}(I) .
$$

Proof. In this first part of the proof, we convert the problem into a purely combinatorial one. The next section will then deal with the derived problem.

Let $I=(V,<)$ be an interval order of height h, given together with an interval representation. For $v \in V$, let $\left(l_{v}, r_{v}\right]$ (left open, right closed) be the corresponding interval. With respect to this representation, we distinguish the 'leftmost' h-chain in I. This chain consists of the elements x_{1}, \ldots, x_{h} where x_{i} has the leftmost right-endpoint r_{v} among all elements of height i. It is easily checked that x_{1}, \ldots, x_{h} is indeed a chain. Now let $r_{i}=r_{x_{i}}$ be the right endpoint of x_{i} 's interval and define a partition of the real axis into blocks. The ith block is

$$
B(i)=\left[r_{i}, r_{i+1}\right) .
$$

This definition is made for $i=0, \ldots, h$ with the convention that $B(0)$ extends to minus infinity and $B(h)$ to plus infinity.

In some sense these blocks capture a relevant part of the structure of I. This is exemplified by two properties.

- The elements v with $r_{v} \in B(i)$ are an antichain for each i. This gives a minimal antichain partition of I.
- If $r_{v} \in B(j)$, then $l_{v} \in B(i)$ for some i less than j.

Suppose we are given a sequence C_{1}, \ldots, C_{h} of sets (of colors) with the following property:
($\alpha) C_{j} \not \equiv C_{i-1} \cup C_{i}$ for all $1<i<j \leqslant h$.
A sequence with this property will henceforth be called an α-sequence. The α-sequence C_{1}, \ldots, C_{h} may be used to color the diagram D_{I} with the colors occurring in the C_{i}. The rule is: to an element $v \in V$ with $l_{v} \in B(i)$ and $r_{v} \in B(j)$ assign any color from $C_{j} \backslash\left(C_{i-1} \cup C_{i}\right)$. This set of colors is nonempty by the (α) property of the sequence C_{i}, since $i<j$. We claim that a coloring obtained this way is proper. Assume to the contrary that there is a covering pair $w<v$ such that w and v obtain the same color. Let $r_{w} \in B(k)$ and $l_{v} \in B(i)$. Since $w<v$, we know that $k \leqslant i$. Due to our coloring rule, we know that the color of w is an element of C_{k} and the color of v is not contained in $C_{i-1} \cup C_{i}$; hence $k<i-1$. This, however, contradicts our assumption that $w<v$, since $l_{x_{i}} \in B(i-1)$ and $l_{v} \geqslant r_{x_{i}}=r_{i}$ gives $w<x_{i}<v$.

We have thus reduced the original problem to the determination of the minimal number of colors which admits a α-sequence of length h. We will demonstrate in next section, Lemmas 2.1 and 2.3, how to construct a α-sequence of length $2^{n-2}+\lfloor(n+1) / 2\rfloor$ using n colors. This will complete the proof of the theorem.

In Section 3 we give an upper bound of $2^{n-1}+\lfloor(n+1) / 2\rfloor$ for the maximal length of a α-sequence. From the proof, we derive some further properties α-sequences of this length necessarily satisfy. Finally we apply the construction of long α-sequences to the problem of finding long cycles between two consecutive levels of the Boolean lattice. A famous instance of this problem is the question whether there is a Hamiltonian cycle between the middle two levels of the Boolean lattice (see e.g., [2] or [3]). The best constructions known until now could guarantee cycles of length $\Omega\left(N^{c}\right)$ where N is the number of vertices and $c \approx 0.85$. We exhibit cycles of length $\geqslant \frac{1}{4} N$.

2. A construction of long a-sequences

Let $t(n, k)$ denote the maximal length of a sequence C_{i} of sets satisfying:
(1) $C_{i} \subseteq\{1, \ldots, n\}$,
(2) $\left|C_{i}\right|=k$ and
(α) if $i<j$ then $C_{j} \neq C_{i-1} \cup C_{i}$.

Lemma 2.1.

$$
t(n, k) \geqslant\binom{ n-1}{k}+1
$$

Proof. The sequences actually constructed will have the additional property
(4) $\left|C_{i-1} \cup C_{i}\right|=k+1$ for all $i \geqslant 2$.

The proof is by induction. For all n and $k=1$ or $k=n$ the claim is obviously true.

Now suppose that two α-sequences as specified have been constructed on $\{1, \ldots, n-1\}$: first a sequence of k-sets $\mathscr{A}=A_{1}, \ldots, A_{s}$ of length $s=\left({ }^{n-2}{ }_{k}^{2}\right)+1$, and second a sequence of $(k-1)$-sets $\mathscr{B}=B_{1}, \ldots, B_{t}$ of length $t=\binom{n-2}{k-1}+1$.

Property (4) guarantees that there is a permutation π of the colors such that $A_{S}=B_{1}^{\pi} \cup B_{2}^{\pi}$. Now let

$$
C_{i}= \begin{cases}A_{i} & \text { if } 1 \leqslant i \leqslant s, \\ B_{i-s+1}^{\pi} \cup\{n\} & \text { if } s+1 \leqslant i \leqslant s+t-1 .\end{cases}
$$

The length of the new sequence is $s+t-1=\left(n_{k}^{-1}\right)+1$. Properties (1) and (2) are obviously true for the sequence C_{i} and property (4) is true for both the \mathscr{A} and the \mathscr{B} sequence. These observations and the choice of π give property (4) for the \mathscr{C} sequence. It remains to verify property (α). If $i<j<s+1$, this property is inherited from the \mathscr{A} sequence. If $s+1<i<j$, it is inherited from the \mathscr{B} sequence. In case $i<s+1 \leqslant j$, we have $n \in C_{j}$ and $n \notin C_{i-1} \cup C_{i}$. The remaining case is $s+1=i<j$. Here the choice of π and the sacrifice of B_{1} show that $C_{s} \cup C_{s+1}=$ $A_{s} \cup B_{2}^{\pi} \cup\{n\}=B_{1}^{\pi} \cup B_{2}^{\pi} \cup\{n\}$. Again the property (α) can be concluded from this property for the \mathscr{B} sequence.

For $k=2$ and $k=n-1$, we can prove that the inequality of Lemma 2.1 is tight, but in general the value of $t(n, k)$ is open.

Problem 2.2. Determine the true value of $t(n, k)$.

Let $T(n)$ denote the maximal length of a sequence C_{i} of sets satisfying:
(1) $C_{i} \subseteq\{1, \ldots, n\}$ and
(α) if $i<j$ then $C_{j} \neq C_{i-1} \cup C_{i}$.

Lemma 2.3.

$$
T(n) \geqslant \sum_{\substack{k \leqslant n \\ k \text { odd }}}\left(\binom{n-1}{k}+1\right)=2^{n-2}+\left\lfloor\frac{n+1}{2}\right\rfloor .
$$

Proof. Let $\mathscr{L}(n, k)$ be the (n, k)-sequence constructed in the preceding lemma. We claim that $\mathscr{L}=\mathscr{L}^{n_{1}}(n, 1) \oplus \mathscr{L}^{\pi_{3}}(n, 3) \oplus \mathscr{L}^{\pi_{5}}(n, 5) \oplus \cdots$ with appropriate permutations π_{j} is a α-sequence of subsets of $\{1, \ldots, n\}$. The π_{k} 's can be found recursively. $\pi_{1}=i d$ and if π_{k-2} has been determined, then π_{k} is chosen as a permutation such that the last set of the sequence $\mathscr{L}^{\pi_{k-2}}(n, k-2)$ is a subset of the first set of $\mathscr{L}^{\pi_{k}}(n, k)$. Let C_{i} be the i th set in the sequence \mathscr{L}. We now check property (α). If the three sets C_{i-1}, C_{i} and C_{j} are in the same subsequence $\mathscr{L}^{\pi_{k}}(n, k)$, then the property is inherited from this subsequence. If $C_{i} \in \mathscr{L}^{\pi_{k}}(n, k)$ and $C_{j} \in \mathscr{L}^{\pi_{k^{\prime}}}\left(n, k^{\prime}\right)$ with $k \leqslant k^{\prime}-2$, then $\left|C_{i-1} \cup C_{i}\right|<\left|C_{j}\right|$ is a consequence of property (4) for the subsequence $\mathscr{L}^{\pi_{k}}(n, k)$, and gives the claim in this case. There remains the situation where C_{i-1} is the last set of its
subsequence. The choice of the π_{k} gives $C_{i-1} \subset C_{i}$ and the property reduces to $C_{j} \not \equiv C_{i}$, which is obvious.

The length of \mathscr{L} is the sum over the length of the $\mathscr{L}^{n_{k}}(n, k)$ used in \mathscr{L}. This is the sum over $\left({ }^{n-1}{ }_{k}^{1}\right)+1$ with k odd, which is $2^{n-2}+\lfloor(n+1) / 2\rfloor$.

3. The structure of very long a-sequences

Theorem 3.1. Let $\mathscr{C}=C_{1}, \ldots, C_{1}$ be a α-sequence of subsets of $\{1, \ldots, n\}$. Then $t \leqslant 2^{n-1}+\lfloor(n+1) / 2\rfloor$.

Proof. We start with some definitions. For $1 \leqslant i \leqslant t-1$, let

$$
\begin{equation*}
S_{i}=\left\{S: C_{i+1} \subset S \subseteq C_{i} \cup C_{i+1}\right\} \tag{1}
\end{equation*}
$$

and $s_{i}=\left|S_{i}\right|$. Observe that with $r_{i}=\left|C_{i} \backslash C_{i+1}\right|$ we have the equation

$$
\begin{equation*}
s_{i}=2^{r_{i}}-1 \tag{2}
\end{equation*}
$$

We now prove two important properties of the sets S_{i}

- $S_{i} \cap S_{j}=\emptyset$ if $i \neq j$. Assume to the contrary that $S \in S_{i} \cap S_{j}$ and let $i<j$. From the definition of the S_{i}, we obtain $C_{j+1} \subset S \subseteq C_{i} \cup C_{i+1}$ which contradicts the (α) property of the sequence \mathscr{C}.
- $\mathscr{C} \cap S_{i}=\emptyset$ for all i. Assume $C_{j} \in S_{i}$. If $j \leqslant i$, then $C_{i+1} \subset C_{j}$ gives a contradiction. If $j=i+1$, note that $C_{i+1} \notin S_{i}$ from the definition. If $j>i+1$, the contradiction comes from $C_{j} \subseteq C_{i} \cup C_{i+1}$.

Therefore, \mathscr{C} and the S_{i} are pairwise disjoint subsets of \mathscr{B}_{n}. This gives the inequality

$$
\begin{equation*}
2^{n} \geqslant t+\sum_{i=1}^{t-1} s_{i} \tag{3}
\end{equation*}
$$

We now partition the indices $\{1, \ldots, t-1\}$ into three classes

- $I_{1}=\left\{i:\left|C_{i}\right|=\left|C_{i+1}\right|\right\}$; note that $i \in I_{1}$ implies $s_{i} \geqslant 1$.
- $I_{2}=\left\{i:\left|C_{i}\right|<\left|C_{i+1}\right|\right\} ;$ trivially $s_{i} \geqslant 0$ for $i \in I_{2}$.
- $I_{3}=\left\{i:\left|C_{i}\right|>\left|C_{i+1}\right|\right\}$; note that if $i \in I_{3}$, then the corresponding s_{i} is relatively large, i.e., $s_{i} \geqslant 2^{\left|C_{i}\right|-\left|C_{i+1}\right|+1}-1$. This estimate is a consequence of Eq. (2) and the fact that C_{i+1} has to contain an element not contained in C_{i}.

First we investigate the case $I_{3}=\emptyset$. This condition guarantees that the sizes of the sets in \mathscr{C} is a nondecreasing sequence. Since \mathscr{B}_{n} has $n+1$ levels, the size of the sets in \mathscr{C} can increase at most n times, i.e., $\left|I_{2}\right| \leqslant n$ and $\left|I_{1}\right| \geqslant t-1-n$. It follows that

$$
2^{n} \geqslant t+\sum_{i \in I_{1}} s_{i}+\sum_{i \in I_{2}} s_{i} \geqslant t+\left|I_{1}\right| \geqslant t+(t-1-n) .
$$

This gives $2 t \leqslant 2^{n}+(n+1)$; hence $t \leqslant 2^{n-1}+\lfloor(n+1) / 2\rfloor$ in this case.

The case $I_{3} \neq \emptyset$ is somewhat more complicated. Let the number of descending steps be d and $I_{3}=\left\{i_{1}, \ldots, i_{d}\right\}$. Let $m_{i, j}$ denote the number of levels the sequence is decreasing when going from $C_{i,}$ to $C_{i,+1}$, i.e., $m_{i, j}=\left|C_{i, j}\right|-\left|C_{i,+1}\right|$ and $s_{i j} \geqslant 2^{m_{i j}+1}-1$. Again we can estimate the size of I_{2}, namely $\left|I_{2}\right| \leqslant n+\sum_{j=1}^{d} m_{i j}$. It follows that

$$
\begin{aligned}
2^{n} & \geqslant t+\sum_{i \in I_{1}} s_{i}+\sum_{i \in I_{2}} s_{i}+\sum_{i \in I_{3}} s_{i} \geqslant t+\left|I_{1}\right|+\sum_{j=1}^{d}\left(2^{m_{i j}+1}-1\right) \\
& \geqslant t+\left((t-1)-\left|I_{2}\right|-\left|I_{3}\right|\right)+\sum_{j=1}^{d} 2^{m_{i j}+1}-d \\
& \geqslant t+\left(t-1-n-\sum_{j=1}^{d} m_{i, j}-d\right)+\sum_{j=1}^{d} 2^{m_{i j}+1}-d .
\end{aligned}
$$

Comparing this with the calculations made for the case $I_{3}=\emptyset$, we find that $t \geqslant 2^{n-1}+\lfloor(n+1) / 2\rfloor$ would require $-\sum_{j=1}^{d} m_{i j}-2 d+\sum_{j=1}^{d} 2^{m_{i j}+1} \leqslant 0$. For each j, we have $2^{m_{i j}}>m_{i_{j}}-2$; hence the above inequality can never hold.

Remark. Let $T^{*}(n)=2^{n-1}+\lfloor(n+1) / 2\rfloor$ be the upper bound from the theorem. We have seen that a α-sequence \mathscr{C} of length $T^{*}(n)$ can only exist if $I_{3}=\emptyset$. Moreover, the following conditions follow from the argument given for Theorem 3.1.
(1) There are exactly n increasing steps, i.e., $\left|I_{2}\right|=n$.
(2) If $i \in I_{1}$, then $s_{i}=1$, i.e., any two consecutive sets of equal size have to be a shift: $C_{i+1}=\left(C_{i} \backslash\{x\}\right) \cup\{y\}$ with $x \in C_{i}$ and $y \notin C_{i}$. If $i \in I_{2}$ then $s_{i}=0$, i.e., if $\left|C_{i}\right|<\left|C_{i+1}\right|$, then there is a containment $C_{i} \subset C_{i+1}$.
(3) Every element of \mathscr{B}_{n} is either an element of \mathscr{C} or appears as the unique element of some S_{i}, i.e., as $C_{i} \cup C_{i+1}$.

From these observations, we obtain an alternate interpretation for a sequence \mathscr{C} of length $T^{*}(n)$ in \mathscr{B}_{n}. In the diagram of \mathscr{B}_{n}, i.e., the n-hypercube, consider the edges (C_{i}, C_{i+1}) and for $i \in I_{2}$ for $i \in I_{1}$ the edges (C_{i}, T_{i}) and (T_{i}, C_{i+1}) where T_{i} is the unique member of S_{i}, i.e., $T_{i}=C_{i} \cup C_{i+1}$. This set of edges is a Hamiltonian path in the hypercube and respects a strong condition of being level accurate. After having reached the k th level for the first time the path will never come back to level $k-2$ (see Fig. 1 for an example, the bullets are the elements of a very long α-sequence).

Problem 3.2. Do sequences of length $T^{*}(n)$ exist for all n ?

We are hopeful that such sequences exist. Our optimism stems in part from computational results. The number of sequences starting with $\emptyset,\{1\},\{2\}, \ldots,\{n\}$ is 1 for $n \leqslant 4,10$ for $n=5,123$ for $n=6$ and there are thousands of solutions for $n=7$. The next case $n=8$ could not be handled by our program, but Markus Fulmek (personal communication) wrote a program which also resolved this case affirmatively.

Fig. 1. A level accurate path in \mathscr{B}_{4}.

4. Long cycles between consecutive levels in \mathscr{B}_{n}

Let $B(n, k)$ denote the bipartite graph consisting of all elements from levels k and $k+1$ of the Boolean lattice \mathscr{B}_{n}. A well-known problem on this class of graphs is the following: Is $B(2 k+1, k)$ Hamiltonian for all k ? Until now it was known that this is the case for $k \leqslant 9$. Since the problem seems to be very hard, some authors have attempted to construct long cycles. The best result (see [3]) lead to cycles of length $\Omega\left(N^{c}\right)$ where $N=2\left({ }_{k}^{2 k+1}\right)$ is the number of vertices of $B(2 k+1, k)$ and $c \approx 0.85$.

Theorem 4.1. In $B(n, k)$, there is a cycle of length

$$
4 \max \left\{\binom{n-3}{k-1}+1,\binom{n-3}{n-k-2}+1\right\} .
$$

Proof. Note that the graphs $B(n, k)$ and $B(n, n-k-1)$ are isomorphic, it thus suffices to exhibit a cycle of length $4\binom{n-3}{k-1}+4$ in $B(n, k)$. To this end, take a α-sequence C_{1}, \ldots, C_{t} of $(k-1)$-sets on $\{1, \ldots, n-2\}$. From Lemma 2.1, we know that $t \geqslant\binom{ n-3}{k-1}+1$ can be achieved. Now consider the following set of edges in $B(n, k)$

- $\left(C_{i} \cup\{n\}, C_{i} \cup C_{i+1} \cup\{n\}\right)$ for $1 \leqslant i<t$,
- $\left(C_{i} \cup C_{i+1} \cup\{n\}, C_{i+1} \cup\{n\}\right)$ for $1 \leqslant i<t$,
- $\left(C_{t} \cup\{n\}, C_{t} \cup\{n-1, n\}\right)$ and $\left(C_{t} \cup\{n-1, n\}, C_{t} \cup\{n-1\}\right)$,
- ($\left.C_{i} \cup\{n-1\}, C_{i} \cup C_{i+1} \cup\{n-1\}\right)$ for $1 \leqslant i<t$,
- $\left(C_{i} \cup C_{i+1} \cup\{n-1\}, C_{i+1} \cup\{n-1\}\right)$ for $1 \leqslant i<t$,
- $\left(C_{1} \cup\{n-1\}, C_{1} \cup\{n-1, n\}\right)$ and $\left(C_{1} \cup\{n-1, n\}, C_{1} \cup\{n\}\right)$.

The proof that this set of edges in fact determines a cycle of length $4 t$ in $B(n, k)$ is straightforward.

With a simple calculation on binomial coefficients, we obtain a final theorem.

Theorem 4.2. There are cycles in $B(2 k+1, k)$ of length at least $\frac{1}{4} N$.

References

[1] Z. Füredi, P. Hajnal, V. Rödl and W.T. Trotter, Interval Orders and shift graphs, Proc. the Hajnal/Sös Conf. on Combinatorics, Budapest, 1991, to appear.
[2] H.A. Kierstead and W.T. Trotter, Explicit matchings in the middle two levels of the Boolean lattice, Order 5 (1988) 163-171.
[3] C. Savage, Long cycles in the middle two levels of the Boolean lattice, Preprint, 1990.

[^0]: *Corresponding author. E-mail: felsner@math.tu-berlin.de.
 ${ }^{1}$ Partially supported by the DFG.

